메뉴 건너뛰기




Volumn 66, Issue , 2015, Pages 26-34

A hybrid intelligent approach based on computer vision and fuzzy logic for quality measurement of milled rice

Author keywords

Breakage; Fuzzy logic; Grading; Image processing; Milled rice

Indexed keywords

ARTIFICIAL INTELLIGENCE; COAL BREAKAGE; COMPUTER VISION; DECISION SUPPORT SYSTEMS; FUZZY INFERENCE; GRADING; IMAGE PROCESSING; MEMBERSHIP FUNCTIONS;

EID: 84922901610     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2015.01.022     Document Type: Article
Times cited : (72)

References (34)
  • 1
    • 33750932599 scopus 로고    scopus 로고
    • Modeling changes in milled rice (Oryza sativa L.) kernel dimensions during soaking by image analysis
    • B. Yadav, and V. Jindal Modeling changes in milled rice (Oryza sativa L.) kernel dimensions during soaking by image analysis J. Food Eng. 80 2007 359 369
    • (2007) J. Food Eng. , vol.80 , pp. 359-369
    • Yadav, B.1    Jindal, V.2
  • 3
    • 84864119760 scopus 로고    scopus 로고
    • Fuzzy logic control and soft sensing applications in food and beverage processes
    • S. Birle, M. Hussein, and T. Becker Fuzzy logic control and soft sensing applications in food and beverage processes Food Control 29 2013 254 269
    • (2013) Food Control , vol.29 , pp. 254-269
    • Birle, S.1    Hussein, M.2    Becker, T.3
  • 4
    • 84879306013 scopus 로고    scopus 로고
    • Expert system based on computer vision to estimate the content of impurities in olive oil samples
    • P. Cano Marchal, D. Martínez Gila, J. Gámez García, and J. Gómez Ortega Expert system based on computer vision to estimate the content of impurities in olive oil samples J. Food Eng. 119 2013 220 228
    • (2013) J. Food Eng. , vol.119 , pp. 220-228
    • Cano Marchal, P.1    Martínez Gila, D.2    Gámez García, J.3    Gómez Ortega, J.4
  • 6
    • 0034473332 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: I. Morphology models
    • S. Majumdar, and D. Jayas Classification of cereal grains using machine vision: I. Morphology models Trans. ASAE 43 2000 1669 1675
    • (2000) Trans. ASAE , vol.43 , pp. 1669-1675
    • Majumdar, S.1    Jayas, D.2
  • 11
    • 84886884747 scopus 로고    scopus 로고
    • Application of imperialist competitive algorithm for feature selection: A case study on bulk rice classification
    • S. Mousavi Rad, F. Akhlaghian Tab, and K. Mollazade Application of imperialist competitive algorithm for feature selection: a case study on bulk rice classification Int. J. Comput. Appl. 40 2012 41 48
    • (2012) Int. J. Comput. Appl. , vol.40 , pp. 41-48
    • Mousavi Rad, S.1    Akhlaghian Tab, F.2    Mollazade, K.3
  • 12
    • 84867506808 scopus 로고    scopus 로고
    • Classification of rice appearance quality based on LS-SVM using machine vision
    • Springer
    • X. Chen, S. Ke, L. Wang, H. Xu, and W. Chen Classification of rice appearance quality based on LS-SVM using machine vision Information Computing and Applications 2012 Springer 104 109
    • (2012) Information Computing and Applications , pp. 104-109
    • Chen, X.1    Ke, S.2    Wang, L.3    Xu, H.4    Chen, W.5
  • 13
    • 84922946693 scopus 로고    scopus 로고
    • Design of an expert system for rice kernel identification using optimal morphological features and back propagation neural network
    • S. MousaviRad, F.A. Tab, and K. Mollazade Design of an expert system for rice kernel identification using optimal morphological features and back propagation neural network Int. J. Appl. 3 2012 33 37
    • (2012) Int. J. Appl. , vol.3 , pp. 33-37
    • Mousavirad, S.1    Tab, F.A.2    Mollazade, K.3
  • 15
    • 85015518386 scopus 로고    scopus 로고
    • Algorithmic approach to quality analysis of Indian basmati rice using digital image processing
    • B.B. Prajapati, and S. Patel Algorithmic approach to quality analysis of Indian basmati rice using digital image processing Int. J. Emerg. Tech. Adv. Eng. 3 2013 503 504
    • (2013) Int. J. Emerg. Tech. Adv. Eng. , vol.3 , pp. 503-504
    • Prajapati, B.B.1    Patel, S.2
  • 16
    • 84922917491 scopus 로고    scopus 로고
    • A method for identification of basmati rice grain of India and its quality using pattern classification
    • H.S. Gujjar, and D.M. Siddappa A method for identification of basmati rice grain of India and its quality using pattern classification Int. J. Eng. Res. Appl. 3 2013 268 273
    • (2013) Int. J. Eng. Res. Appl. , vol.3 , pp. 268-273
    • Gujjar, H.S.1    Siddappa, D.M.2
  • 17
    • 84922903785 scopus 로고    scopus 로고
    • Classification and grading rice using multi-class SVM
    • H. Kaur, and B. Singh Classification and grading rice using multi-class SVM Int. J. Sci. Res. Publ. 3 2013 1 5
    • (2013) Int. J. Sci. Res. Publ. , vol.3 , pp. 1-5
    • Kaur, H.1    Singh, B.2
  • 21
    • 34147164628 scopus 로고    scopus 로고
    • How human expertise at industrial scale and experiments can be combined to improve food process knowledge and control
    • I. Allais, R.-B. Edoura-Gaena, J.-B. Gros, and G. Trystram How human expertise at industrial scale and experiments can be combined to improve food process knowledge and control Food Res. Int. 40 2007 585 602
    • (2007) Food Res. Int. , vol.40 , pp. 585-602
    • Allais, I.1    Edoura-Gaena, R.-B.2    Gros, J.-B.3    Trystram, G.4
  • 22
    • 78650690087 scopus 로고    scopus 로고
    • An intelligent combined method based on power spectral density, decision trees and fuzzy logic for hydraulic pumps fault diagnosis
    • K. Mollazade, H. Ahmadi, M. Omid, and R. Alimardani An intelligent combined method based on power spectral density, decision trees and fuzzy logic for hydraulic pumps fault diagnosis Int. J. Intell. Syst. Technol. 3 2008 251 263
    • (2008) Int. J. Intell. Syst. Technol. , vol.3 , pp. 251-263
    • Mollazade, K.1    Ahmadi, H.2    Omid, M.3    Alimardani, R.4
  • 23
    • 84975769510 scopus 로고    scopus 로고
    • Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier
    • M. Omid Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier Expert Syst. Appl. 38 2011 4339 4347
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4339-4347
    • Omid, M.1
  • 24
    • 84859005891 scopus 로고    scopus 로고
    • Thermal conductivity prediction of foods by neural network and fuzzy (ANFIS) modeling techniques
    • M.S. Rahman, M. Rashid, and M. Hussain Thermal conductivity prediction of foods by neural network and fuzzy (ANFIS) modeling techniques Food Bioprod. Process. 90 2012 333 340
    • (2012) Food Bioprod. Process. , vol.90 , pp. 333-340
    • Rahman, M.S.1    Rashid, M.2    Hussain, M.3
  • 25
    • 84904190978 scopus 로고    scopus 로고
    • A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods
    • T. Chen, Y. Jin, X. Qiu, and X. Chen A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods Expert Syst. Appl. 41 2014 7328 7337
    • (2014) Expert Syst. Appl. , vol.41 , pp. 7328-7337
    • Chen, T.1    Jin, Y.2    Qiu, X.3    Chen, X.4
  • 26
    • 77954953155 scopus 로고    scopus 로고
    • Effects of crop-machine variables on paddy grain damage during handling with an inclined screw auger
    • H. Zareiforoush, M. Komarizadeh, and M. Alizadeh Effects of crop-machine variables on paddy grain damage during handling with an inclined screw auger Biosyst. Eng. 106 2010 234 242
    • (2010) Biosyst. Eng. , vol.106 , pp. 234-242
    • Zareiforoush, H.1    Komarizadeh, M.2    Alizadeh, M.3
  • 28
    • 85015517544 scopus 로고    scopus 로고
    • Milling characteristics of rice grains as affected by paddy mixture ratio and moisture content
    • S. Payman, I. Bagheri, and H. Zareiforoush Milling characteristics of rice grains as affected by paddy mixture ratio and moisture content Int. J. Biosci. 4 2014 87 97
    • (2014) Int. J. Biosci. , vol.4 , pp. 87-97
    • Payman, S.1    Bagheri, I.2    Zareiforoush, H.3
  • 30
    • 84975849789 scopus 로고    scopus 로고
    • An expert egg grading system based on machine vision and artificial intelligence techniques
    • M. Omid, M. Soltani, M.H. Dehrouyeh, S.S. Mohtasebi, and H. Ahmadi An expert egg grading system based on machine vision and artificial intelligence techniques J. Food Eng. 118 2013 70 77
    • (2013) J. Food Eng. , vol.118 , pp. 70-77
    • Omid, M.1    Soltani, M.2    Dehrouyeh, M.H.3    Mohtasebi, S.S.4    Ahmadi, H.5
  • 31
    • 84962327591 scopus 로고    scopus 로고
    • Simultaneous determination of multi rice quality parameters using image analysis method
    • C. Fang, X. Hu, C. Sun, B. Duan, L. Xie, and P. Zhou Simultaneous determination of multi rice quality parameters using image analysis method Food Anal. Methods 2014 1 9
    • (2014) Food Anal. Methods , pp. 1-9
    • Fang, C.1    Hu, X.2    Sun, C.3    Duan, B.4    Xie, L.5    Zhou, P.6
  • 32
    • 79951644112 scopus 로고    scopus 로고
    • An inspection method of rice milling degree based on machine vision and gray-gradient co-occurrence matrix
    • Springer
    • P. Wan, and C. Long An inspection method of rice milling degree based on machine vision and gray-gradient co-occurrence matrix Computer and Computing Technologies in Agriculture IV 2011 Springer 195 202
    • (2011) Computer and Computing Technologies in Agriculture IV , pp. 195-202
    • Wan, P.1    Long, C.2
  • 33
    • 0041331721 scopus 로고    scopus 로고
    • Rank and response combination from confusion matrix data
    • J. Parker Rank and response combination from confusion matrix data Inf. Fusion 2 2001 113 120
    • (2001) Inf. Fusion , vol.2 , pp. 113-120
    • Parker, J.1
  • 34
    • 84975713351 scopus 로고    scopus 로고
    • A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow
    • N. Teimouri, M. Omid, K. Mollazade, and A. Rajabipour A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow Comput. Electron. Agric. 105 2014 34 43
    • (2014) Comput. Electron. Agric. , vol.105 , pp. 34-43
    • Teimouri, N.1    Omid, M.2    Mollazade, K.3    Rajabipour, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.