-
1
-
-
68849101849
-
2 Nanofibers for Ethanol Sensor
-
2 Nanofibers for Ethanol Sensor Sens. Actuators, A 2009, 154, 175-179
-
(2009)
Sens. Actuators, A
, vol.154
, pp. 175-179
-
-
Song, X.1
Liu, L.2
-
3
-
-
67349197106
-
SiC Nanotubes Arrays Fabricated by Sputtering Using Electrospun PVP Nanofiber as Templates
-
Zhou, J. Y.; Zhou, M.; Chen, Z. Y.; Zhang, Z. X.; Chen, C. C.; Li, R. S.; Gao, X. P.; Xie, E. Q. SiC Nanotubes Arrays Fabricated by Sputtering Using Electrospun PVP Nanofiber as Templates Surf. Coat. Technol. 2009, 203, 3219-3223
-
(2009)
Surf. Coat. Technol.
, vol.203
, pp. 3219-3223
-
-
Zhou, J.Y.1
Zhou, M.2
Chen, Z.Y.3
Zhang, Z.X.4
Chen, C.C.5
Li, R.S.6
Gao, X.P.7
Xie, E.Q.8
-
4
-
-
77957266180
-
2 Hollow Nanofibers
-
2 Hollow Nanofibers Sens. Actuators, B 2010, 150, 191-199
-
(2010)
Sens. Actuators, B
, vol.150
, pp. 191-199
-
-
Choi, J.-K.1
Hwang, I.-S.2
Kim, S.-J.3
Park, J.-S.4
Park, S.-S.5
Jeong, U.6
Kang, Y.C.7
Lee, J.-H.8
-
5
-
-
68949172364
-
Humidity Sensor Based on LiCl-Doped ZnO Electrospun Nanofibers
-
Wang, W.; Li, Z.; Liu, L.; Zhang, H.; Zheng, W.; Wang, Y.; Huang, H.; Wang, Z.; Wang, C. Humidity Sensor Based on LiCl-Doped ZnO Electrospun Nanofibers Sens. Actuators, B 2009, 141, 404-409
-
(2009)
Sens. Actuators, B
, vol.141
, pp. 404-409
-
-
Wang, W.1
Li, Z.2
Liu, L.3
Zhang, H.4
Zheng, W.5
Wang, Y.6
Huang, H.7
Wang, Z.8
Wang, C.9
-
6
-
-
0346434142
-
2 Nanowires that Can Be Used for Gas Sensing under Ambient Conditions
-
2 Nanowires that Can Be Used for Gas Sensing under Ambient Conditions J. Am. Chem. Soc. 2003, 125, 16176-16177
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 16176-16177
-
-
Wang, Y.L.1
Jiang, X.C.2
Xia, Y.N.3
-
7
-
-
84900438181
-
2 Prismatic Hollow Nanofibers Synthesized by Electrospinning
-
2 Prismatic Hollow Nanofibers Synthesized by Electrospinning Sens. Actuators, B 2014, 200, 181-190
-
(2014)
Sens. Actuators, B
, vol.200
, pp. 181-190
-
-
Cheng, L.1
Ma, S.Y.2
Li, X.B.3
Luo, J.4
Li, W.Q.5
Li, F.M.6
Mao, Y.Z.7
Wang, T.T.8
Li, Y.F.9
-
8
-
-
81155139723
-
2 Nanofibers in Hydrogen Sensor
-
2 Nanofibers in Hydrogen Sensor Sens. Actuators, B 2011, 160, 858-863
-
(2011)
Sens. Actuators, B
, vol.160
, pp. 858-863
-
-
Xu, X.R.1
Sun, J.H.2
Zhang, H.N.3
Wang, Z.J.4
Dong, B.5
Jiang, T.T.6
Wang, W.7
Li, Z.Y.8
Wang, C.9
-
9
-
-
79959629735
-
2 Nanofibers Sensors with Micro Heater
-
2 Nanofibers Sensors with Micro Heater Sens. Actuators, B 2011, 157, 154-161
-
(2011)
Sens. Actuators, B
, vol.157
, pp. 154-161
-
-
Dong, K.-Y.1
Choi, J.-K.2
Hwang, I.-S.3
Lee, J.-W.4
Kang, B.H.5
Ham, D.-J.6
Lee, J.-H.7
Ju, B.-K.8
-
10
-
-
84872539884
-
2S Detection
-
2S Detection Sens. Actuators, B 2013, 176, 585-591
-
(2013)
Sens. Actuators, B
, vol.176
, pp. 585-591
-
-
Choi, S.-W.1
Katoch, A.2
Zhang, J.3
Kim, S.S.4
-
11
-
-
84861190293
-
3 Hetero-Nanofibers by a Modified Double Jets Electrospinning Process
-
3 Hetero-Nanofibers by a Modified Double Jets Electrospinning Process Sens. Actuators, B 2012, 166, 746-752
-
(2012)
Sens. Actuators, B
, vol.166
, pp. 746-752
-
-
Du, H.Y.1
Wang, J.2
Su, M.Y.3
Yao, P.J.4
Zheng, Y.G.5
Yu, N.S.6
-
12
-
-
84887644386
-
2 Nanofibers
-
2 Nanofibers Sens. Actuators, B 2014, 191, 659-665
-
(2014)
Sens. Actuators, B
, vol.191
, pp. 659-665
-
-
Qi, Q.1
Zhao, J.2
Xuan, R.-F.3
Wang, P.-P.4
Feng, L.-L.5
Zhou, L.-J.6
Wang, D.-J.7
Li, G.-D.8
-
13
-
-
0028549016
-
Modified Heterojunctions Based on Zinc Oxide Thin Film for Hydrogen Gas-Sensor Applications
-
Basu, S.; Dutta, A. Modified Heterojunctions Based on Zinc Oxide Thin Film for Hydrogen Gas-Sensor Applications Sens. Actuators, B 1994, 22, 83-87
-
(1994)
Sens. Actuators, B
, vol.22
, pp. 83-87
-
-
Basu, S.1
Dutta, A.2
-
14
-
-
0028375859
-
Effects of Interface States on Gas-Sensing Properties of a CuO/ZnO Thin-Film Heterojunction
-
Ushio, Y.; Miyayama, M.; Yanagida, H. Effects of Interface States on Gas-Sensing Properties of a CuO/ZnO Thin-Film Heterojunction Sens. Actuators, B 1994, 17, 221-226
-
(1994)
Sens. Actuators, B
, vol.17
, pp. 221-226
-
-
Ushio, Y.1
Miyayama, M.2
Yanagida, H.3
-
16
-
-
0038410151
-
Sensing Properties of CuO-ZnO Heterojunction Gas Sensors
-
Hu, Y.; Zhou, X.; Han, Q.; Cao, Q.; Huang, Y. Sensing Properties of CuO-ZnO Heterojunction Gas Sensors Mater. Sci. Eng. 2003, B 99, 41-43
-
(2003)
Mater. Sci. Eng.
, vol.99
, pp. 41-43
-
-
Hu, Y.1
Zhou, X.2
Han, Q.3
Cao, Q.4
Huang, Y.5
-
18
-
-
79960537920
-
2 Heterojunction for Exclusive Hydrogen Sensors
-
2 Heterojunction for Exclusive Hydrogen Sensors Adv. Funct. Mater. 2011, 21, 2680-2686
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2680-2686
-
-
Huang, H.1
Gong, H.2
Chow, C.L.3
Guo, J.4
White, T.J.5
Tse, M.S.6
Tan, O.K.7
-
20
-
-
56149105109
-
Reduced Graphene Oxide Molecular Sensors
-
Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors Nano Lett. 2008, 8, 3137-3140
-
(2008)
Nano Lett.
, vol.8
, pp. 3137-3140
-
-
Robinson, J.T.1
Perkins, F.K.2
Snow, E.S.3
Wei, Z.4
Sheehan, P.E.5
-
21
-
-
77249097555
-
Reduced Graphene Oxide for Room-Temperature Gas Sensors
-
Lu, G.; Ocola, L. E.; Chen, J. H. Reduced Graphene Oxide for Room-Temperature Gas Sensors Nanotechnology 2009, 20, 445502
-
(2009)
Nanotechnology
, vol.20
, pp. 445502
-
-
Lu, G.1
Ocola, L.E.2
Chen, J.H.3
-
22
-
-
77949344390
-
All-Organic Vapor Sensor using Inkjet-Printed Reduced Graphene Oxide
-
Dua, V.; Surwade, S. P.; Ammu, S.; Agnihorta, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-Organic Vapor Sensor using Inkjet-Printed Reduced Graphene Oxide Angew. Chem., Int. Ed. 2010, 49, 2154-2157
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 2154-2157
-
-
Dua, V.1
Surwade, S.P.2
Ammu, S.3
Agnihorta, S.R.4
Jain, S.5
Roberts, K.E.6
Park, S.7
Ruoff, R.S.8
Manohar, S.K.9
-
23
-
-
84858222542
-
2 Gas Sensor
-
2 Gas Sensor J. Am. Chem. Soc. 2012, 134, 4905-4917
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 4905-4917
-
-
Deng, S.1
Tjoa, V.2
Fan, H.M.3
Tan, H.R.4
Sayle, D.C.5
Olivo, M.6
Mhaisalkar, S.7
Wei, J.8
Sow, C.H.9
-
24
-
-
80455137265
-
2-Polyaniline-Reduced Graphene Oxide Nanocomposites as an Anode Material for Lithium-Ion Batteries
-
2-Polyaniline-Reduced Graphene Oxide Nanocomposites as an Anode Material for Lithium-Ion Batteries J. Mater. Chem. 2011, 21, 17654-17657
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 17654-17657
-
-
Liang, R.L.1
Cao, H.Q.2
Qian, D.3
Zhang, J.X.4
Qu, M.Z.5
-
25
-
-
79251506638
-
2/Graphene Composites by Reducing Graphene Oxide with Stannous Ions
-
2/Graphene Composites by Reducing Graphene Oxide with Stannous Ions J. Mater. Chem. 2011, 21, 1673-1676
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 1673-1676
-
-
Zhang, M.1
Lei, D.2
Du, Z.F.3
Yin, X.M.4
Chen, L.B.5
Li, Q.H.6
Wang, Y.G.7
Wang, T.H.8
-
26
-
-
84862969844
-
2/Reduced Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference
-
2/Reduced Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference J. Phys. Chem. C 2012, 116, 1034-1041
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 1034-1041
-
-
Wei, Y.1
Gao, C.2
Meng, F.L.3
Li, H.H.4
Wang, L.5
Liu, J.H.6
Huang, X.J.7
-
27
-
-
84875529915
-
2
-
2 Sens. Actuators, B 2013, 179, 61-68
-
(2013)
Sens. Actuators, B
, vol.179
, pp. 61-68
-
-
Neri, G.1
Leonardi, S.G.2
Latino, M.3
Donato, N.4
Baek, S.5
Conte, D.E.6
Russo, P.A.7
Pinna, N.8
-
28
-
-
84891459384
-
2-Reduced Graphene Oxide Hybrid Nanoparticles
-
2-Reduced Graphene Oxide Hybrid Nanoparticles ACS Appl. Mater. Interfaces 2013, 5, 13333-13339
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 13333-13339
-
-
Chen, M.X.1
Zhang, C.C.2
Li, L.Z.3
Liu, Y.4
Li, X.C.5
Xu, X.Y.6
Xia, F.L.7
Wang, W.8
Gao, J.P.9
-
29
-
-
84885130198
-
2 Sensing at Low Operating Temperature
-
2 Sensing at Low Operating Temperature Sens. Actuators, B 2014, 190, 472-478
-
(2014)
Sens. Actuators, B
, vol.190
, pp. 472-478
-
-
Zhang, H.1
Feng, J.2
Fei, T.3
Liu, S.4
Zhang, T.5
-
30
-
-
84889647339
-
2 Nanoparticle Loading onto Reduced Graphene Oxide as Anodes for Sodium-Ion Batteries with Superior Rate and Cycling Performances
-
2 Nanoparticle Loading onto Reduced Graphene Oxide as Anodes for Sodium-Ion Batteries with Superior Rate and Cycling Performances J. Mater. Chem. A 2014, 2, 529-534
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 529-534
-
-
Wang, Y.-X.1
Lim, Y.-G.2
Park, M.-S.3
Chou, S.-L.4
Kim, J.H.5
Liu, H.-K.6
Dou, S.-X.7
Kim, Y.-J.8
-
31
-
-
84898604434
-
2 Anchored Reduced Graphene Oxide nanocomposites as Negative Electrode with High Rate Capability and Long Cyclability for Lithium-Ion Batteries
-
2 Anchored Reduced Graphene Oxide nanocomposites as Negative Electrode with High Rate Capability and Long Cyclability for Lithium-Ion Batteries J. Power Sources 2014, 262, 15-22
-
(2014)
J. Power Sources
, vol.262
, pp. 15-22
-
-
Guo, J.1
Jiang, B.2
Zhang, X.3
Liu, H.4
-
32
-
-
84902768572
-
2 Quantum Dots-Reduced Graphene Oxide Composite for Enzyme-Free Ultrasensitive Electrochemical Detection of Urea
-
2 Quantum Dots-Reduced Graphene Oxide Composite for Enzyme-Free Ultrasensitive Electrochemical Detection of Urea Anal. Chem. 2014, 86, 5914-5921
-
(2014)
Anal. Chem.
, vol.86
, pp. 5914-5921
-
-
Dutta, D.1
Chandra, S.2
Swain, A.K.3
Bahadur, D.4
-
33
-
-
84898775914
-
2-Conjugated Reduced Graphene Oxide Nanocomposites as Non-enzymatic Glucose Sensors
-
2-Conjugated Reduced Graphene Oxide Nanocomposites as Non-enzymatic Glucose Sensors Phys. Chem. Chem. Phys. 2014, 16, 8801-8807
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 8801-8807
-
-
Ye, Y.1
Wang, P.2
Dai, E.3
Liu, J.4
Tian, Z.5
Liang, C.6
Shao, G.7
-
34
-
-
84925088771
-
2-Reduced Graphene Oxide Nanoribbons as Anodes for Lithium Ion Batteries with Enhanced Cycling Stability
-
2-Reduced Graphene Oxide Nanoribbons as Anodes for Lithium Ion Batteries with Enhanced Cycling Stability Nano Res. 2014, 7, 1319-1326
-
(2014)
Nano Res.
, vol.7
, pp. 1319-1326
-
-
Li, L.1
Kovalchuk, A.2
Tour, J.M.3
-
35
-
-
84896879327
-
2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets
-
2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets ACS Appl. Mater. Interfaces 2014, 6, 2588-2597
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 2588-2597
-
-
Choi, S.-J.1
Jang, B.-H.2
Lee, S.-J.3
Min, B.K.4
Rothschild, A.5
Kim, I.-D.6
-
36
-
-
34249742469
-
Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide
-
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguten, S. T.; Ruoff, R. S. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide Carbon 2007, 45, 1558-1565
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguten, S.T.8
Ruoff, R.S.9
-
37
-
-
80755143034
-
One-Pot Reduction of Graphene Oxide at Subzero Temperatures
-
Cui, P.; Lee, J.; Hwang, E.; Lee, H. One-Pot Reduction of Graphene Oxide at Subzero Temperatures Chem. Commun. 2011, 47, 12370-12372
-
(2011)
Chem. Commun.
, vol.47
, pp. 12370-12372
-
-
Cui, P.1
Lee, J.2
Hwang, E.3
Lee, H.4
-
40
-
-
70350614396
-
2-ZnO Core-Shell Nanofibers via a Novel Two-Step Process and Their Gas Sensing Properties
-
2-ZnO Core-Shell Nanofibers via a Novel Two-Step Process and Their Gas Sensing Properties Nanotechnology 2009, 20, 465603-465608
-
(2009)
Nanotechnology
, vol.20
, pp. 465603-465608
-
-
Choi, S.W.1
Park, J.Y.2
Kim, S.S.3
-
43
-
-
77952885921
-
Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays
-
Park, J. Y.; Choi, S. W.; Kim, S. S. Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays Nanoscale Res. Lett. 2010, 5, 353-359
-
(2010)
Nanoscale Res. Lett.
, vol.5
, pp. 353-359
-
-
Park, J.Y.1
Choi, S.W.2
Kim, S.S.3
-
44
-
-
79961007030
-
Growth Behavior of Sensing Properties of Nanograins in CuO Nanofibers
-
Choi, S.-W.; Park, J. Y.; Kim, S. S. Growth Behavior of Sensing Properties of Nanograins in CuO Nanofibers Chem. Eng. J. 2011, 172, 550-556
-
(2011)
Chem. Eng. J.
, vol.172
, pp. 550-556
-
-
Choi, S.-W.1
Park, J.Y.2
Kim, S.S.3
-
45
-
-
79952366004
-
2 Fibers and Size Dependent Sensing Properties
-
2 Fibers and Size Dependent Sensing Properties Sens. Actuators, B 2011, 152, 254-260
-
(2011)
Sens. Actuators, B
, vol.152
, pp. 254-260
-
-
Park, J.Y.1
Asokan, K.2
Choi, S.-W.3
Kim, S.S.4
-
46
-
-
68849097540
-
Growth of Nanograins in Electrospun ZnO Nanofibers
-
Park, J. Y.; Kim, S. Growth of Nanograins in Electrospun ZnO Nanofibers J. Am. Ceram. Soc. 2009, 92, 1691-1694
-
(2009)
J. Am. Ceram. Soc.
, vol.92
, pp. 1691-1694
-
-
Park, J.Y.1
Kim, S.2
-
48
-
-
77955467724
-
3 Nanofibers by Electrospinning and Their Application as a CO Gas Sensor
-
3 Nanofibers by Electrospinning and Their Application as a CO Gas Sensor Sens. Actuators, B 2010, 149, 28-33
-
(2010)
Sens. Actuators, B
, vol.149
, pp. 28-33
-
-
Lim, S.K.1
Hwang, S.-H.2
Chang, D.3
Kim, S.4
-
51
-
-
36248954922
-
Optical Bandgap and Photoconductance of Electrospun Tin Oxide Nanofibers
-
Wang, Y.; Ramos, I.; Santiago-Aviles, J. J. Optical Bandgap and Photoconductance of Electrospun Tin Oxide Nanofibers J. Appl. Phys. 2007, 102, 093517
-
(2007)
J. Appl. Phys.
, vol.102
, pp. 093517
-
-
Wang, Y.1
Ramos, I.2
Santiago-Aviles, J.J.3
-
53
-
-
84872849298
-
Synthesis and Photocatalytic Activity of Electrospun Niobium Oxide Nanofibers
-
Qi, S.; Zuo, R.; Liu, Y.; Wang, Y. Synthesis and Photocatalytic Activity of Electrospun Niobium Oxide Nanofibers Mater. Res. Bull. 2013, 48, 1213-1217
-
(2013)
Mater. Res. Bull.
, vol.48
, pp. 1213-1217
-
-
Qi, S.1
Zuo, R.2
Liu, Y.3
Wang, Y.4
-
55
-
-
84859148346
-
19 Single-Particle-Chain Nanofibers: Preparation, Characterization, Formation Principle, and Magnetization Reversal Mechanism
-
19 Single-Particle-Chain Nanofibers: Preparation, Characterization, Formation Principle, and Magnetization Reversal Mechanism ACS Nano 2012, 6, 2273-2280
-
(2012)
ACS Nano
, vol.6
, pp. 2273-2280
-
-
Zhang, J.1
Fu, J.2
Li, F.3
Xie, E.4
Xue, D.5
Mellors, N.J.6
Peng, Y.7
-
56
-
-
77957839108
-
3 Composite Nanofibers: Preparation, Structure and Magnetic Properties
-
3 Composite Nanofibers: Preparation, Structure and Magnetic Properties Mater. Chem. Phys. 2010, 124, 970-975
-
(2010)
Mater. Chem. Phys.
, vol.124
, pp. 970-975
-
-
Liu, M.1
Shen, X.2
Song, F.3
Xiang, J.4
Meng, X.5
-
57
-
-
84901811869
-
Effect of Temperature and Nanoparticle Size on Sensor Properties of Nanostructures Tin Oxide Films
-
Kozhushner, M. A.; Trakhtenberg, L. I.; Bodneva, V. L.; Belisheva, T. V.; Landerville, A. C.; Oleynik, I. L. Effect of Temperature and Nanoparticle Size on Sensor Properties of Nanostructures Tin Oxide Films J. Phys. Chem. C 2014, 118, 11440-11444
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 11440-11444
-
-
Kozhushner, M.A.1
Trakhtenberg, L.I.2
Bodneva, V.L.3
Belisheva, T.V.4
Landerville, A.C.5
Oleynik, I.L.6
-
58
-
-
79959667332
-
2 Gas Sensors Based on Flower-like and Tube-like ZnO Nanomaterials
-
2 Gas Sensors Based on Flower-like and Tube-like ZnO Nanomaterials Sens. Actuators, B 2011, 157, 565-574
-
(2011)
Sens. Actuators, B
, vol.157
, pp. 565-574
-
-
Chen, M.1
Wang, Z.2
Han, D.3
Gu, F.4
Guo, G.5
-
60
-
-
84861907557
-
2 Nanofibers
-
2 Nanofibers Sens. Actuators, B 2012, 169, 54-60
-
(2012)
Sens. Actuators, B
, vol.169
, pp. 54-60
-
-
Choi, S.-W.1
Zhang, J.2
Akash, K.3
Kim, S.S.4
-
61
-
-
84902439118
-
Functionalization of ZnO Nanorods by CuO Nanospikes for Gas Sensor Applications
-
Rai, P.; Jeon, S.-H.; Lee, C.-H.; Lee, J.-H.; Yu, Y.-T. Functionalization of ZnO Nanorods by CuO Nanospikes for Gas Sensor Applications RSC Adv. 2014, 4, 23604-23609
-
(2014)
RSC Adv.
, vol.4
, pp. 23604-23609
-
-
Rai, P.1
Jeon, S.-H.2
Lee, C.-H.3
Lee, J.-H.4
Yu, Y.-T.5
|