메뉴 건너뛰기




Volumn 20, Issue 4, 2015, Pages 1107-1116

Codimension 3 b-t bifurcations in an epidemic model with a nonlinear incidence

Author keywords

Bogdanov Takens bifurcation; Codimension three; Epidemic model

Indexed keywords


EID: 84922784390     PISSN: 15313492     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcdsb.2015.20.1107     Document Type: Article
Times cited : (47)

References (17)
  • 1
    • 1642341634 scopus 로고    scopus 로고
    • Periodicity in an epidemic model with a generalized non-linear incidence
    • M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96.
    • (2004) Math. Biosci , vol.189 , pp. 75-96
    • Alexander, M.E.1    Moghadas, S.M.2
  • 3
    • 84879551605 scopus 로고    scopus 로고
    • Multiparametric bifurcations of an epidemiological model with strong Allee effect
    • L. Cai, G. Chen and D. Xiao, Multiparametric bifurcations of an epidemiological model with strong Allee effect, J. Math. Biol., 67 (2013), 185-215.
    • (2013) J. Math. Biol , vol.67 , pp. 185-215
    • Cai, L.1    Chen, G.2    Xiao, D.3
  • 6
    • 50149096788 scopus 로고    scopus 로고
    • Saturation recovery leads to multiple endemic equilibria and backward bifurcation
    • J. Cui,, X. Mu and H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theoret. Biol., 254 (2008), 275-283.
    • (2008) J. Theoret. Biol , vol.254 , pp. 275-283
    • Cui, J.1    Mu, X.2    Wan, H.3
  • 7
    • 84974232147 scopus 로고
    • Generic 3-parameter family of vector feilds on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3
    • F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter family of vector feilds on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. & Dyn. Sys., 7 (1987), 375-413.
    • (1987) Ergod. Theor. & Dyn. Sys , vol.7 , pp. 375-413
    • Dumortier, F.1    Roussarie, R.2    Sotomayor, J.3
  • 8
    • 0034486891 scopus 로고    scopus 로고
    • Mathematics of infectious diseases
    • H. W. Hethcote, Mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
    • (2000) SIAM Rev , vol.42 , pp. 599-653
    • Hethcote, H.W.1
  • 9
    • 84885970317 scopus 로고    scopus 로고
    • Bifurcation analysis in a predator-prey model with constant- yield predator harvesting
    • J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant- yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
    • (2013) Discrete Contin. Dyn. Syst. Ser. B , vol.18 , pp. 2101-2121
    • Huang, J.1    Gong, Y.2    Ruan, S.3
  • 10
    • 84868198095 scopus 로고    scopus 로고
    • Canard cycles for predator-prey systems with Holling types of functional response
    • C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910.
    • (2013) J. Differential Equations , vol.254 , pp. 879-910
    • Li, C.1    Zhu, H.2
  • 11
    • 34548668208 scopus 로고    scopus 로고
    • Complex dynamics of a simple epidemic model with a nonlinear incidence
    • J. Li, Y. Zhou, J. Wu and Z. Ma, Complex dynamics of a simple epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 161-173.
    • (2007) Discrete Contin. Dyn. Syst. Ser. B , vol.8 , pp. 161-173
    • Li, J.1    Zhou, Y.2    Wu, J.3    Ma, Z.4
  • 12
    • 0023070210 scopus 로고
    • Dynamical behavior of epidemiological model with nonlinear incidence rates
    • W. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological model with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.
    • (1987) J. Math. Biol , vol.25 , pp. 359-380
    • Liu, W.1    Hethcote, H.W.2    Levin, S.A.3
  • 13
    • 0022298258 scopus 로고
    • In uence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
    • W. Liu, S. A. Levin and Y. Iwasa, In uence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
    • (1986) J. Math. Biol , vol.23 , pp. 187-204
    • Liu, W.1    Levin, S.A.2    Iwasa, Y.3
  • 15
    • 0037429355 scopus 로고    scopus 로고
    • Dynamical behavior of an epidemic model with a nonlinear incidence rate
    • S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.
    • (2003) J. Differential Equations , vol.188 , pp. 135-163
    • Ruan, S.1    Wang, W.2
  • 16
    • 69049115668 scopus 로고    scopus 로고
    • Coexistence of limit cycles and homoclinic loops in an SIRS model with nonlinear incidence rate
    • Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in an SIRS model with nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.
    • (2008) SIAM J. Appl. Math , vol.69 , pp. 621-639
    • Tang, Y.1    Huang, D.2    Ruan, S.3    Zhang, W.4
  • 17
    • 0038104718 scopus 로고    scopus 로고
    • Bifurcation analysis of a predator-prey system with nonmonotonic functional response
    • H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636-682.
    • (2002) SIAM J. Appl. Math , vol.63 , pp. 636-682
    • Zhu, H.1    Campbell, S.A.2    Wolkowicz, G.S.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.