-
1
-
-
84984082223
-
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates
-
Andrews J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968, 10:707-723.
-
(1968)
Biotechnol. Bioeng.
, vol.10
, pp. 707-723
-
-
Andrews, J.F.1
-
2
-
-
0007280433
-
Stable limit cycles in pre-predator populations
-
Albrecht F., Gatzke H., Wax N. Stable limit cycles in pre-predator populations. Science 1973, 181:1073-1074.
-
(1973)
Science
, vol.181
, pp. 1073-1074
-
-
Albrecht, F.1
Gatzke, H.2
Wax, N.3
-
3
-
-
0001747368
-
Uniqueness of a limit cycle for a predator-prey system
-
Cheng K.S. Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 1981, 12:541-548.
-
(1981)
SIAM J. Math. Anal.
, vol.12
, pp. 541-548
-
-
Cheng, K.S.1
-
4
-
-
0011893594
-
Existence and uniqueness of limit cycles of differential equations with predator-prey interactions
-
(in Chinese)
-
Chen L., Jing Z. Existence and uniqueness of limit cycles of differential equations with predator-prey interactions. Kexue Tongbao 1984, 29(9):521-523. (in Chinese).
-
(1984)
Kexue Tongbao
, vol.29
, Issue.9
, pp. 521-523
-
-
Chen, L.1
Jing, Z.2
-
5
-
-
34250124159
-
The qualitative analysis of two species predator-prey model with Holling's type III functional response
-
(in Chinese)
-
Cheng J., Zhang H. The qualitative analysis of two species predator-prey model with Holling's type III functional response. Appl. Math. Mech. 1986, 7(1):73-80. (in Chinese).
-
(1986)
Appl. Math. Mech.
, vol.7
, Issue.1
, pp. 73-80
-
-
Cheng, J.1
Zhang, H.2
-
6
-
-
18144396577
-
Time analysis and entry-exit relation near planar turning points
-
De Maesschalck P., Dumortier F. Time analysis and entry-exit relation near planar turning points. J. Differential Equations 2005, 215:225-267.
-
(2005)
J. Differential Equations
, vol.215
, pp. 225-267
-
-
De Maesschalck, P.1
Dumortier, F.2
-
7
-
-
33646684699
-
Canard solutions at non-generic turning points
-
(electronic)
-
De Maesschalck P., Dumortier F. Canard solutions at non-generic turning points. Trans. Amer. Math. Soc. 2006, 358:2291-2334. (electronic).
-
(2006)
Trans. Amer. Math. Soc.
, vol.358
, pp. 2291-2334
-
-
De Maesschalck, P.1
Dumortier, F.2
-
10
-
-
0035920091
-
Multiple canard cycles in generalized Liénard equations
-
Dumortier F., Roussarie R. Multiple canard cycles in generalized Liénard equations. J. Differential Equations 2001, 174:1-29.
-
(2001)
J. Differential Equations
, vol.174
, pp. 1-29
-
-
Dumortier, F.1
Roussarie, R.2
-
14
-
-
0022849138
-
Predator-prey systems with group defence: the paradox of enrichment revisited
-
Freedman H.I., Wolkowicz G.S.K. Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 1986, 48:493-508.
-
(1986)
Bull. Math. Biol.
, vol.48
, pp. 493-508
-
-
Freedman, H.I.1
Wolkowicz, G.S.K.2
-
15
-
-
84888258034
-
The components of predation as revealed by a study of small-mammal predation of the European pine sawfly
-
Holling C.S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 1959, 91:293-320.
-
(1959)
Can. Entomol.
, vol.91
, pp. 293-320
-
-
Holling, C.S.1
-
16
-
-
0002366911
-
The functional response of predators to prey density and its role in mimicry and population regulation
-
Holling C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 1965, 45:3-60.
-
(1965)
Mem. Entomol. Soc. Can.
, vol.45
, pp. 3-60
-
-
Holling, C.S.1
-
17
-
-
0025073957
-
Multiple limit cycles for predator-prey models
-
Hofbauer J., So J.W.-H. Multiple limit cycles for predator-prey models. Math. Biosci. 1990, 99:71-75.
-
(1990)
Math. Biosci.
, vol.99
, pp. 71-75
-
-
Hofbauer, J.1
So, J.W.-H.2
-
18
-
-
0018098741
-
A model of predator-prey system with functional response
-
Kasarinoff N., van der Deiesch P. A model of predator-prey system with functional response. Math. Biosci. 1978, 39:124-134.
-
(1978)
Math. Biosci.
, vol.39
, pp. 124-134
-
-
Kasarinoff, N.1
van der Deiesch, P.2
-
19
-
-
0035839416
-
Relaxation oscillation and canard explosion
-
Krupa M., Szmolyan P., Krupa M., Szmolyan P. Relaxation oscillation and canard explosion. J. Differential Equations 2001, 174:312-368.
-
(2001)
J. Differential Equations
, vol.174
, pp. 312-368
-
-
Krupa, M.1
Szmolyan, P.2
Krupa, M.3
Szmolyan, P.4
-
20
-
-
47149085303
-
Bifurcation analysis of a predator-prey system with generalized Holling type III function response
-
Lamontagne Y., Coutu C., Rousseau C. Bifurcation analysis of a predator-prey system with generalized Holling type III function response. J. Dynam. Differential Equations 2008, 20:535-571.
-
(2008)
J. Dynam. Differential Equations
, vol.20
, pp. 535-571
-
-
Lamontagne, Y.1
Coutu, C.2
Rousseau, C.3
-
22
-
-
0039645998
-
Limit cycles in predator-prey communities
-
May R.M. Limit cycles in predator-prey communities. Science 1972, 17:900-902.
-
(1972)
Science
, vol.17
, pp. 900-902
-
-
May, R.M.1
-
23
-
-
84974158163
-
Multiple bifurcation in a predator-prey system with nonmonotonic predator response
-
Rothe F., Shafer D.S. Multiple bifurcation in a predator-prey system with nonmonotonic predator response. Proc. Roy. Soc. Edinburgh Sect. A 1992, 120:313-347.
-
(1992)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.120
, pp. 313-347
-
-
Rothe, F.1
Shafer, D.S.2
-
24
-
-
0015243940
-
Paradox of enrichment: destabilization of exploitation ecosystems in ecological time
-
Rosenzweig M.L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 1971, 171:385-387.
-
(1971)
Science
, vol.171
, pp. 385-387
-
-
Rosenzweig, M.L.1
-
25
-
-
0034839054
-
Global analysis in a predator-prey system with nonmonotonic functional response
-
Ruan S., Xiao D. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 2001, 61:1445-1472.
-
(2001)
SIAM J. Appl. Math.
, vol.61
, pp. 1445-1472
-
-
Ruan, S.1
Xiao, D.2
-
26
-
-
0001555614
-
Bifurcation analysis of a predator-prey system involving group defence
-
Wolkowicz G.S.K. Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 1988, 48:592-606.
-
(1988)
SIAM J. Appl. Math.
, vol.48
, pp. 592-606
-
-
Wolkowicz, G.S.K.1
-
27
-
-
0025331493
-
Limit cycles in predator-prey models
-
Wrzosek D. Limit cycles in predator-prey models. Math. Biosci. 1990, 98:1-12.
-
(1990)
Math. Biosci.
, vol.98
, pp. 1-12
-
-
Wrzosek, D.1
-
28
-
-
33745670640
-
Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response
-
Xiao D., Zhu H. Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 2006, 66:802-819.
-
(2006)
SIAM J. Appl. Math.
, vol.66
, pp. 802-819
-
-
Xiao, D.1
Zhu, H.2
-
29
-
-
0037137987
-
Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type
-
Zhu H., Rousseau C. Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type. J. Differential Equations 2002, 178:325-436.
-
(2002)
J. Differential Equations
, vol.178
, pp. 325-436
-
-
Zhu, H.1
Rousseau, C.2
-
30
-
-
0038104718
-
Bifurcation analysis of a predator-prey system with nonmonotonic function response
-
Zhu H., Campbell S.A., Wolkowicz G.S.K. Bifurcation analysis of a predator-prey system with nonmonotonic function response. SIAM J. Appl. Math. 2002, 63:636-682.
-
(2002)
SIAM J. Appl. Math.
, vol.63
, pp. 636-682
-
-
Zhu, H.1
Campbell, S.A.2
Wolkowicz, G.S.K.3
|