메뉴 건너뛰기




Volumn 41, Issue 2, 2015, Pages

Solving basis pursuit: Heuristic optimality check and solver comparison

Author keywords

Algorithms; Experimentation; Performance; Reliability; Verification

Indexed keywords

ALGORITHMS; COMPRESSED SENSING; LINEAR SYSTEMS; RELIABILITY; VERIFICATION;

EID: 84922761775     PISSN: 00983500     EISSN: 15577295     Source Type: Journal    
DOI: 10.1145/2689662     Document Type: Article
Times cited : (29)

References (44)
  • 2
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • Stephen Becker, Jérome Bobin, and Emmanuel J. Candes. 2011. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imag Sci. 4, 1, 1-39.
    • (2011) SIAM J. Imag Sci , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candes, E.J.3
  • 3
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • Ernesto G. Birgin, Jo͆e M. Martínez, and Marcos Raydán. 2000. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optimiz. 10, 4, 1196-1211.
    • (2000) SIAM J. Optimiz , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.G.1    Martínez, J.M.2    Raydán, M.3
  • 5
    • 67349244805 scopus 로고    scopus 로고
    • Linearized Bregman iterations for compressed sensing
    • Jian-Feng Cai, Stanley Osher, and Zuowei Shen. 2009. Linearized Bregman iterations for compressed sensing. Math. Comp. 78, 267, 1515-1536.
    • (2009) Math. Comp , vol.78 , Issue.267 , pp. 1515-1536
    • Cai, J.1    Osher, S.2    Shen, Z.3
  • 6
    • 0016601948 scopus 로고
    • On improving relaxationmethods by modified gradient techniques
    • PaoloM. Camerini, Luigi Fratta, and FrancescoMaffioli. 1975. On improving relaxationmethods by modified gradient techniques. Math. Prog. Study 3, 26-34.
    • (1975) Math. Prog. Study , vol.3 , pp. 26-34
    • Camerini, P.M.1    Fratta, L.2    Maffioli, F.3
  • 7
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Emmanuel J. Candes, Justin Romberg, and Terence Tao. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 2, 489-509.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 8
    • 70450216954 scopus 로고    scopus 로고
    • Convergence analysis of deflected conditional approximate subgradient methods
    • Giacomo D'Antonio and Antonio Frangioni. 2009. Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optimiz 20, 1, 357-386.
    • (2009) SIAM J. Optimiz , vol.20 , Issue.1 , pp. 357-386
    • D'antonio, G.1    Frangioni, A.2
  • 9
    • 0028479246 scopus 로고
    • Adaptive time-frequency decompositions
    • Geoffrey M. Davies, Stéphane G. Mallat, and Zhifeng Zhang. 1994. Adaptive time-frequency decompositions. Opt. Eng. 33, 7, 2183-2191.
    • (1994) Opt. Eng , vol.33 , Issue.7 , pp. 2183-2191
    • Davies, G.M.1    Mallat, S.G.2    Zhang, Z.3
  • 10
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • David L. Donoho. 2006. Compressed Sensing. IEEE Trans. Inf. Theory 52, 4, 1289-1306.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 11
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • David L. Donoho and Xiaoming Huo. 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47, 7, 2845-2862.
    • (2001) IEEE Trans. Inf. Theory , vol.47 , Issue.7 , pp. 2845-2862
    • Donoho, D.L.1    Huo, X.2
  • 12
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of ℓ 1-norm minimization problems when the solution may be sparse
    • David L. Donoho and Yaakov Tsaig. 2008. Fast solution ofℓ 1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54, 11, 4789-4812.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 15
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Applications to compressed sensing and other inverse problems
    • Mário A. T. Figueiredo, Robert D. Nowak, and Stephen J. Wright. 2007. Gradient projection for sparse reconstruction: Applications to compressed sensing and other inverse problems. IEEE J. Select Topics Sig. Proc. 4, 1, 586-597.
    • (2007) IEEE J. Select Topics Sig. Proc , vol.4 , Issue.1 , pp. 586-597
    • Mário, A.1    Figueiredo, T.2    Nowak, R.D.3    Wright, S.J.4
  • 16
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • Jean-Jacques Fuchs. 2004. On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50, 6, 1341-1344.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.6 , pp. 1341-1344
    • Fuchs, J.1
  • 17
    • 78449233271 scopus 로고    scopus 로고
    • Necessary and sufficient conditions for linear convergence ofℓ 1-regularization
    • Markus Grasmair, Markus Haltmeier, and Otmar Scherzer. 2011. Necessary and sufficient conditions for linear convergence ofℓ 1-regularization. Commun. Pure Appl. Math. 64, 2, 161-182.
    • (2011) Commun. Pure Appl. Math , vol.64 , Issue.2 , pp. 161-182
    • Grasmair, M.1    Haltmeier, M.2    Scherzer, O.3
  • 18
    • 0016025814 scopus 로고
    • Validation of subgradient optimization
    • Michael Held, Philip Wolfe, and Harlan P. Crowder. 1974. Validation of subgradient optimization. Math. Prog. 6, 62-88.
    • (1974) Math. Prog , vol.6 , pp. 62-88
    • Held, M.1    Wolfe, P.2    Crowder, H.P.3
  • 20
    • 0029754821 scopus 로고    scopus 로고
    • Conditional subgradient optimization-Theory and applications
    • Torbjörn Larsson, Michael Patriksson, and Ann-Brith Strömberg. 1996. Conditional subgradient optimization-Theory and applications. Europ. J. Oper. Res. 88, 2, 382-403.
    • (1996) Europ. J. Oper. Res , vol.88 , Issue.2 , pp. 382-403
    • Larsson, T.1    Patriksson, M.2    Strömberg, A.3
  • 21
    • 33745698150 scopus 로고    scopus 로고
    • Convergence and computational analyses for some variable target value and subgradient deflection methods
    • Churlzu Lim and Hanif D. Sherali. 2005. Convergence and computational analyses for some variable target value and subgradient deflection methods. Computat. Opt. Appl. 34, 3, 409-428.
    • (2005) Computat. Opt. Appl , vol.34 , Issue.3 , pp. 409-428
    • Lim, C.1    Sherali, H.D.2
  • 23
    • 84873891272 scopus 로고    scopus 로고
    • Constructing test instances for basis pursuit denoising
    • Dirk A. Lorenz. 2013. Constructing test instances for basis pursuit denoising. IEEE Trans. Sign. Process. 61, 5, 2010-2014.
    • (2013) IEEE Trans. Sign. Process , vol.61 , Issue.5 , pp. 2010-2014
    • Lorenz, D.A.1
  • 24
    • 84894410319 scopus 로고    scopus 로고
    • An infeasible-point subgradientmethod using adaptive approximate projections
    • D. A. Lorenz,M. E. Pfetsch, and A. M. Tillmann. 2014. An infeasible-point subgradientmethod using adaptive approximate projections. Computat. Optimiz. Appl. 57, 2, 271-306.
    • (2014) Computat. Optimiz. Appl , vol.57 , Issue.2 , pp. 271-306
    • Lorenz, D.A.1    Pfetsch, M.E.2    Tillmann, A.M.3
  • 25
    • 80051486803 scopus 로고    scopus 로고
    • Beyond convergence rates: Exact inversion with Tikhonov regularization with sparsity constraints
    • Dirk A. Lorenz, Stefan Schiffler, and Dennis Trede. 2011. Beyond convergence rates: Exact inversion with Tikhonov regularization with sparsity constraints. Inve. Prob. 27, 085009.
    • (2011) Inve. Prob , vol.27 , pp. 085009
    • Lorenz, D.A.1    Schiffler, S.2    Trede, D.3
  • 26
    • 84867135375 scopus 로고    scopus 로고
    • Complexity analysis of the Lasso regularization path
    • J. Langford and J. Pineau (Eds.), Omnipress, Madison, WI
    • J. Mairal and B. Yu. 2012. Complexity analysis of the Lasso regularization path. In Proceedings of the 29th International Conference on Machine Learning (ICML). J. Langford and J. Pineau (Eds.), Omnipress, Madison, WI, 353-360.
    • (2012) Proceedings of the 29th International Conference on Machine Learning ICML) , pp. 353-360
    • Mairal, J.1    Yu, B.2
  • 29
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Yurii Nesterov. 2005. Smooth minimization of non-smooth functions. Math. Prog. 103, 1, 127-152.
    • (2005) Math. Prog , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 30
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Michael R. Osbourne, Brett Presnell, and Berwin A. Turlach. 2000. A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 3, 389-402.
    • (2000) IMA J. Numer. Anal , vol.20 , Issue.3 , pp. 389-402
    • Osbourne, M.R.1    Brett, P.2    Turlach, B.A.3
  • 32
    • 84861615338 scopus 로고    scopus 로고
    • Princeton University Press, Princeton, NJ
    • Andrzej Ruszczynski 2006. Nonlinear Optimization. Princeton University Press, Princeton, NJ.
    • (2006) Nonlinear Optimization
    • Ruszczynski, A.1
  • 34
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Joel A. Tropp. 2004. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory. 50, 10, 2231-2242.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 35
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • March 2006
    • Joel A. Tropp. 2006. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 3 (March 2006), 1030-1051.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 36
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Joel A. Tropp and Anna C. Gilbert. 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 12, 4655-5666.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-5666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 37
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • Ewout van den Berg and Michael P. Friedlander. 2008. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 2, 890-912.
    • (2008) SIAM J. Sci. Comput , vol.31 , Issue.2 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 38
    • 78651555630 scopus 로고    scopus 로고
    • Sparse signal reconstruction via iterative support detection
    • YilunWang andWotao Yin. 2010. Sparse signal reconstruction via iterative support detection. SIAM J. Imag. Sci. 3, 3, 462-491.
    • (2010) SIAM J. Imag. Sci , vol.3 , Issue.3 , pp. 462-491
    • Wang, Y.1    Yin, W.2
  • 39
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
    • Zaiwen Wen, Wotao Yin, Donald Goldfarb, and Yin Zhang. 2010. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32, 4, 1832-1857.
    • (2010) SIAM J. Sci. Comput , vol.32 , Issue.4 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 42
    • 79952307213 scopus 로고    scopus 로고
    • Alternating direction algorithms forℓ 1-problems in compressive sensing
    • Junfeng Yang and Yin Zhang. 2011. Alternating direction algorithms forℓ 1-problems in compressive sensing. SIAM J. Sci. Comput. 33, 1, 250-278.
    • (2011) SIAM J. Sci. Comput , vol.33 , Issue.1 , pp. 250-278
    • Yang, J.1    Zhang, Y.2
  • 43
    • 78651547900 scopus 로고    scopus 로고
    • Analysis and generalizations of the linearized Bregman model
    • Wotao Yin. 2010. Analysis and generalizations of the linearized Bregman model. SIAM J. Imag. Sci. 3, 4, 856-877.
    • (2010) SIAM J. Imag. Sci , vol.3 , Issue.4 , pp. 856-877
    • Yin, W.1
  • 44
    • 84977895355 scopus 로고    scopus 로고
    • Bregman iterative algorithms for ℓ 1-minimization with applications to compressed sensing
    • Wotao Yin, Stanley J. Osher, Donald Goldfarb, and Jérome Darbon. 2008. Bregman iterative algorithms forℓ 1-minimization with applications to compressed sensing. SIAM J. Imag Sci. 1, 1, 143-168.
    • (2008) SIAM J. Imag Sci , vol.1 , Issue.1 , pp. 143-168
    • Yin, W.1    Osher, S.J.2    Goldfarb, D.3    Darbon, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.