메뉴 건너뛰기




Volumn 26, Issue 3, 2016, Pages 641-661

A blocked Gibbs sampler for NGG-mixture models via a priori truncation

Author keywords

A priori truncation method; Bayesian nonparametric mixture models; Blocked Gibbs sampler; Finite dimensional approximation; Normalized generalized gamma process

Indexed keywords


EID: 84922750134     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-015-9549-6     Document Type: Article
Times cited : (21)

References (39)
  • 1
    • 73149115734 scopus 로고    scopus 로고
    • Bayesian density estimation and model selection using nonparametric hierarchical mixtures
    • Argiento, R., Guglielmi, A., Pievatolo, A.: Bayesian density estimation and model selection using nonparametric hierarchical mixtures. Comput. Stat. Data Anal. 54, 816–832 (2010)
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 816-832
    • Argiento, R.1    Guglielmi, A.2    Pievatolo, A.3
  • 2
    • 84908061167 scopus 로고    scopus 로고
    • A “density-based” algorithm for cluster analysis using species sampling Gaussian mixture models
    • Argiento, R., Cremaschi, A., Guglielmi, A.: A “density-based” algorithm for cluster analysis using species sampling Gaussian mixture models. J. Comput. Graph. Stat. 23, 1126–1142 (2014)
    • (2014) J. Comput. Graph. Stat. , vol.23 , pp. 1126-1142
    • Argiento, R.1    Cremaschi, A.2    Guglielmi, A.3
  • 3
  • 6
    • 84877774553 scopus 로고    scopus 로고
    • Bayesian nonparametric models for bipartite graphs
    • Caron, F.: Bayesian nonparametric models for bipartite graphs. In: NIPS, pp. 2060–2068 (2012)
    • (2012) NIPS , pp. 2060-2068
    • Caron, F.1
  • 10
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar, M., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90, 577–588 (1995)
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.1    West, M.2
  • 11
    • 84878592020 scopus 로고    scopus 로고
    • MCMC for normalized random measure mixture models
    • Favaro, S., Teh, Y.: MCMC for normalized random measure mixture models. Stat. Sci. 28(3), 335–359 (2013)
    • (2013) Stat. Sci. , vol.28 , Issue.3 , pp. 335-359
    • Favaro, S.1    Teh, Y.2
  • 12
    • 84885360628 scopus 로고    scopus 로고
    • Slice sampling σ-stable Poisson-Kingman mixture models
    • Favaro, S., Walker, S.G.: Slice sampling σ-stable Poisson-Kingman mixture models. J. Comput. Graph. Stat. 22(4), 830–847 (2013)
    • (2013) J. Comput. Graph. Stat. , vol.22 , Issue.4 , pp. 830-847
    • Favaro, S.1    Walker, S.G.2
  • 13
    • 84873381981 scopus 로고    scopus 로고
    • A class of measure-valued Markov chains and Bayesian nonparametrics
    • Favaro, S., Guglielmi, A., Walker, S.: A class of measure-valued Markov chains and Bayesian nonparametrics. Bernoulli 18(3), 1002–1030 (2012)
    • (2012) Bernoulli , vol.18 , Issue.3 , pp. 1002-1030
    • Favaro, S.1    Guglielmi, A.2    Walker, S.3
  • 14
    • 0001411887 scopus 로고
    • A representation of independent increment processes without Gaussian components
    • Ferguson, T.S., Klass, M.: A representation of independent increment processes without Gaussian components. Ann. Math. Stat. 43, 1634–1643 (1972)
    • (1972) Ann. Math. Stat. , vol.43 , pp. 1634-1643
    • Ferguson, T.S.1    Klass, M.2
  • 15
    • 0036017464 scopus 로고    scopus 로고
    • A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models
    • Gelfand, A.E., Kottas, A.: A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. J. Comput. Graph. Stat. 11, 289–305 (2002)
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 289-305
    • Gelfand, A.E.1    Kottas, A.2
  • 17
    • 79952793816 scopus 로고    scopus 로고
    • Posterior simulation of normalized random measure mixtures
    • Griffin, J., Walker, S.G.: Posterior simulation of normalized random measure mixtures. J. Comput. Graph. Stat. 20, 241–259 (2011)
    • (2011) J. Comput. Graph. Stat. , vol.20 , pp. 241-259
    • Griffin, J.1    Walker, S.G.2
  • 18
    • 84953360633 scopus 로고    scopus 로고
    • Griffin, J.E.: An adaptive truncation method for inference in Bayesian nonparametric models. Stat. Comput. doi: (2014)
    • Griffin, J.E.: An adaptive truncation method for inference in Bayesian nonparametric models. Stat. Comput. doi:10.1007/s11222-014-9519-4 (2014)
  • 19
    • 84878224151 scopus 로고    scopus 로고
    • Comparing distributions by using dependent normalized random-measure mixtures
    • Griffin, J.E., Kolossiatis, M., Steel, M.F.: Comparing distributions by using dependent normalized random-measure mixtures. J. R. Stat. Soc. B 75(3), 499–529 (2013)
    • (2013) J. R. Stat. Soc. B , vol.75 , Issue.3 , pp. 499-529
    • Griffin, J.E.1    Kolossiatis, M.2    Steel, M.F.3
  • 20
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • Ishwaran, H., James, L.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.2
  • 21
    • 0001677650 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models
    • Ishwaran, H., Zarepour, M.: Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika 87, 371–390 (2000)
    • (2000) Biometrika , vol.87 , pp. 371-390
    • Ishwaran, H.1    Zarepour, M.2
  • 22
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate sum representations for the Dirichlet process
    • Ishwaran, H., Zarepour, M.: Exact and approximate sum representations for the Dirichlet process. Can. J. Stat. 30, 269–283 (2002)
    • (2002) Can. J. Stat , vol.30 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 23
    • 60249093564 scopus 로고    scopus 로고
    • Posterior analysis for normalized random measures with independent increments
    • James, L., Lijoi, A., Prünster, I.: Posterior analysis for normalized random measures with independent increments. Scand. J. Stat. 36, 76–97 (2009)
    • (2009) Scand. J. Stat. , vol.36 , pp. 76-97
    • James, L.1    Lijoi, A.2    Prünster, I.3
  • 25
    • 78650307472 scopus 로고    scopus 로고
    • Slice sampling mixture models
    • Kalli, M., Griffin, J.E., Walker, S.G.: Slice sampling mixture models. Stat. Comput. 21(1), 93–105 (2011)
    • (2011) Stat. Comput. , vol.21 , Issue.1 , pp. 93-105
    • Kalli, M.1    Griffin, J.E.2    Walker, S.G.3
  • 26
    • 0038319590 scopus 로고
    • Poisson Processes
    • Oxford University Press, Oxford
    • Kingman, J.F.C.: Poisson Processes, vol. 3. Oxford University Press, Oxford (1993)
    • (1993) vol , vol.3
    • Kingman, J.F.C.1
  • 27
    • 34547828069 scopus 로고    scopus 로고
    • Controlling the reinforcement in Bayesian nonparametric mixture models
    • Lijoi, A., Mena, R.H., Prünster, I.: Controlling the reinforcement in Bayesian nonparametric mixture models. J. R. Stat. Soc. B 69, 715–740 (2007)
    • (2007) J. R. Stat. Soc. B , vol.69 , pp. 715-740
    • Lijoi, A.1    Mena, R.H.2    Prünster, I.3
  • 28
    • 60149085871 scopus 로고    scopus 로고
    • Investigating nonparametric priors with Gibbs structure
    • Lijoi, A., Prunster, I., Walker, S.G.: Investigating nonparametric priors with Gibbs structure. Stat. Sin. 18, 1653–1668 (2008)
    • (2008) Stat. Sin. , vol.18 , pp. 1653-1668
    • Lijoi, A.1    Prunster, I.2    Walker, S.G.3
  • 29
    • 84889100973 scopus 로고    scopus 로고
    • Bayesian inference with dependent normalized completely random measures
    • Lijoi, A., Nipoti, B., Prunster, I.: Bayesian inference with dependent normalized completely random measures. Bernoulli 20, 1260–1291 (2014)
    • (2014) Bernoulli , vol.20 , pp. 1260-1291
    • Lijoi, A.1    Nipoti, B.2    Prunster, I.3
  • 31
    • 0032091593 scopus 로고    scopus 로고
    • Approximating distributions of random functionals of Ferguson-Dirichlet priors
    • Muliere, P., Tardella, L.: Approximating distributions of random functionals of Ferguson-Dirichlet priors. Can. J. Stat. 26(2), 283–297 (1998)
    • (1998) Can. J. Stat. , vol.26 , Issue.2 , pp. 283-297
    • Muliere, P.1    Tardella, L.2
  • 32
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9, 249–265 (2000)
    • (2000) J. Comput. Graph. Stat. , vol.9 , pp. 249-265
    • Neal, R.1
  • 33
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
    • Papaspiliopoulos, O., Roberts, G.O.: Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95, 169–186 (2008)
    • (2008) Biometrika , vol.95 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 37
    • 0038702581 scopus 로고    scopus 로고
    • Distributional results for means of random measures with independent increments
    • Regazzini, E., Lijoi, A., Prünster, I.: Distributional results for means of random measures with independent increments. Ann. Stat. 31, 560–585 (2003)
    • (2003) Ann. Stat. , vol.31 , pp. 560-585
    • Regazzini, E.1    Lijoi, A.2    Prünster, I.3
  • 38
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sinica 4(2), 639–650 (1994)
    • (1994) Stat. Sinica , vol.4 , Issue.2 , pp. 639-650
    • Sethuraman, J.1
  • 39
    • 33847707418 scopus 로고    scopus 로고
    • Sampling the Dirichlet mixture model with slices
    • Walker, S.G.: Sampling the Dirichlet mixture model with slices. Commun. Stat. Simulat. 36, 45–54 (2007)
    • (2007) Commun. Stat. Simulat. , vol.36 , pp. 45-54
    • Walker, S.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.