메뉴 건너뛰기




Volumn 20, Issue 2, 2015, Pages 124-133

Molecular mechanisms governing Arabidopsis iron uptake

Author keywords

Iron uptake; IRT1 trafficking; Phytohormones; Transcriptional regulation

Indexed keywords

ARABIDOPSIS;

EID: 84922749866     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.11.004     Document Type: Review
Times cited : (275)

References (123)
  • 2
    • 84920179053 scopus 로고    scopus 로고
    • Iron nutrition, biomass production, and plant product quality
    • Briat J.F., et al. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015, 20:33-40.
    • (2015) Trends Plant Sci. , vol.20 , pp. 33-40
    • Briat, J.F.1
  • 3
    • 0028886897 scopus 로고
    • The composition of the continental crust
    • Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59:1217-1232.
    • (1995) Geochim. Cosmochim. Acta , vol.59 , pp. 1217-1232
    • Wedepohl, K.H.1
  • 4
    • 0028045384 scopus 로고
    • Iron: nutritious, noxious, and not readily available
    • Guerinot M.L., Yi Y. Iron: nutritious, noxious, and not readily available. Plant Physiol. 1994, 104:815-820.
    • (1994) Plant Physiol. , vol.104 , pp. 815-820
    • Guerinot, M.L.1    Yi, Y.2
  • 5
    • 0002286083 scopus 로고
    • Evidence for a specific uptake system for iron phytosiderophores in roots of grasses
    • Römheld V., Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986, 80:175-180.
    • (1986) Plant Physiol. , vol.80 , pp. 175-180
    • Römheld, V.1    Marschner, H.2
  • 6
    • 84864320486 scopus 로고    scopus 로고
    • Iron uptake, translocation, and regulation in higher plants
    • Kobayashi T., Nishizawa N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63:131-152.
    • (2012) Annu. Rev. Plant Biol. , vol.63 , pp. 131-152
    • Kobayashi, T.1    Nishizawa, N.K.2
  • 7
    • 79959901177 scopus 로고    scopus 로고
    • Chloroplastic and mitochondrial metal homeostasis
    • Nouet C., et al. Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci. 2011, 16:395-404.
    • (2011) Trends Plant Sci. , vol.16 , pp. 395-404
    • Nouet, C.1
  • 8
    • 68749092956 scopus 로고    scopus 로고
    • Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots
    • Santi S., Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 2009, 183:1072-1084.
    • (2009) New Phytol. , vol.183 , pp. 1072-1084
    • Santi, S.1    Schmidt, W.2
  • 9
    • 0001102875 scopus 로고
    • Mechanism of iron uptake by peanut plants: I. Fe reduction, chelate splitting, and release of phenolics
    • Romheld V., Marschner H. Mechanism of iron uptake by peanut plants: I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983, 71:949-954.
    • (1983) Plant Physiol. , vol.71 , pp. 949-954
    • Romheld, V.1    Marschner, H.2
  • 10
    • 77955843787 scopus 로고    scopus 로고
    • In vitro interactions of coumarins with iron
    • Mladenka P., et al. In vitro interactions of coumarins with iron. Biochimie 2010, 92:1108-1114.
    • (2010) Biochimie , vol.92 , pp. 1108-1114
    • Mladenka, P.1
  • 11
    • 84904803077 scopus 로고    scopus 로고
    • Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition
    • Schmidt H., et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE 2014, 9:e102444.
    • (2014) PLoS ONE , vol.9 , pp. e102444
    • Schmidt, H.1
  • 12
    • 0033602102 scopus 로고    scopus 로고
    • A ferric-chelate reductase for iron uptake from soils
    • Robinson N.J., et al. A ferric-chelate reductase for iron uptake from soils. Nature 1999, 397:694-697.
    • (1999) Nature , vol.397 , pp. 694-697
    • Robinson, N.J.1
  • 13
    • 0029891827 scopus 로고    scopus 로고
    • A novel iron-regulated metal transporter from plants identified by functional expression in yeast
    • Eide D., et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:5624-5628.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 5624-5628
    • Eide, D.1
  • 14
    • 0035983839 scopus 로고    scopus 로고
    • IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth
    • Vert G., et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 2002, 14:1223-1233.
    • (2002) Plant Cell , vol.14 , pp. 1223-1233
    • Vert, G.1
  • 15
    • 34248581128 scopus 로고    scopus 로고
    • Iron assimilation and transcription factor controlled synthesis of riboflavin in plants
    • Vorwieger A., et al. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 2007, 226:147-158.
    • (2007) Planta , vol.226 , pp. 147-158
    • Vorwieger, A.1
  • 16
    • 83255189525 scopus 로고    scopus 로고
    • Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula
    • Rodriguez-Celma J., et al. Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula. Plant Cell Physiol. 2011, 52:2173-2189.
    • (2011) Plant Cell Physiol. , vol.52 , pp. 2173-2189
    • Rodriguez-Celma, J.1
  • 17
    • 34250665751 scopus 로고    scopus 로고
    • Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover
    • Jin C.W., et al. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol. 2007, 144:278-285.
    • (2007) Plant Physiol. , vol.144 , pp. 278-285
    • Jin, C.W.1
  • 18
    • 84888307631 scopus 로고    scopus 로고
    • Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
    • Fourcroy P., et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 2014, 201:155-167.
    • (2014) New Phytol. , vol.201 , pp. 155-167
    • Fourcroy, P.1
  • 19
    • 84891770385 scopus 로고    scopus 로고
    • Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis
    • Schmid N.B., et al. Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis. Plant Physiol. 2014, 164:160-172.
    • (2014) Plant Physiol. , vol.164 , pp. 160-172
    • Schmid, N.B.1
  • 20
    • 84879719974 scopus 로고    scopus 로고
    • Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula
    • Rodriguez-Celma J., et al. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 2013, 162:1473-1485.
    • (2013) Plant Physiol. , vol.162 , pp. 1473-1485
    • Rodriguez-Celma, J.1
  • 21
    • 11144299015 scopus 로고    scopus 로고
    • Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato
    • Bauer P., et al. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol. 2004, 136:4169-4183.
    • (2004) Plant Physiol. , vol.136 , pp. 4169-4183
    • Bauer, P.1
  • 22
    • 0037108975 scopus 로고    scopus 로고
    • The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots
    • Ling H.Q., et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13938-13943.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 13938-13943
    • Ling, H.Q.1
  • 23
    • 27944446929 scopus 로고    scopus 로고
    • AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants
    • Yuan Y.X., et al. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 2005, 15:613-621.
    • (2005) Cell Res. , vol.15 , pp. 613-621
    • Yuan, Y.X.1
  • 24
    • 18444408674 scopus 로고    scopus 로고
    • The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
    • Colangelo E.P., Guerinot M.L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 2004, 16:3400-3412.
    • (2004) Plant Cell , vol.16 , pp. 3400-3412
    • Colangelo, E.P.1    Guerinot, M.L.2
  • 25
    • 8844234980 scopus 로고    scopus 로고
    • FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana
    • Jakoby M., et al. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 2004, 577:528-534.
    • (2004) FEBS Lett. , vol.577 , pp. 528-534
    • Jakoby, M.1
  • 26
    • 84856506005 scopus 로고    scopus 로고
    • Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants
    • Ivanov R., et al. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol. Plant 2012, 5:27-42.
    • (2012) Mol. Plant , vol.5 , pp. 27-42
    • Ivanov, R.1
  • 27
    • 84873261716 scopus 로고    scopus 로고
    • Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana
    • Wang N., et al. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol. Plant 2013, 6:503-513.
    • (2013) Mol. Plant , vol.6 , pp. 503-513
    • Wang, N.1
  • 28
    • 40249095934 scopus 로고    scopus 로고
    • FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis
    • Yuan Y., et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 2008, 18:385-397.
    • (2008) Cell Res. , vol.18 , pp. 385-397
    • Yuan, Y.1
  • 29
    • 84866265429 scopus 로고    scopus 로고
    • Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway
    • Sivitz A.B., et al. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS ONE 2012, 7:e44843.
    • (2012) PLoS ONE , vol.7 , pp. e44843
    • Sivitz, A.B.1
  • 30
    • 84903386114 scopus 로고    scopus 로고
    • Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid
    • Maurer F., et al. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid. PLoS ONE 2014, 9:e99234.
    • (2014) PLoS ONE , vol.9 , pp. e99234
    • Maurer, F.1
  • 31
    • 84900868052 scopus 로고    scopus 로고
    • Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors
    • Andriankaja M.E., et al. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol. Biol. 2014, 85:233-245.
    • (2014) Plant Mol. Biol. , vol.85 , pp. 233-245
    • Andriankaja, M.E.1
  • 32
    • 34548034674 scopus 로고    scopus 로고
    • Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana
    • Wang H.Y., et al. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 2007, 226:897-908.
    • (2007) Planta , vol.226 , pp. 897-908
    • Wang, H.Y.1
  • 33
    • 77956819375 scopus 로고    scopus 로고
    • The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
    • Long T.A., et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 2010, 22:2219-2236.
    • (2010) Plant Cell , vol.22 , pp. 2219-2236
    • Long, T.A.1
  • 34
    • 84888245849 scopus 로고    scopus 로고
    • Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation
    • Kobayashi T., et al. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat. Commun. 2013, 4:2792.
    • (2013) Nat. Commun. , vol.4 , pp. 2792
    • Kobayashi, T.1
  • 35
    • 84888270643 scopus 로고    scopus 로고
    • MYB10 and MYB72 are required for growth under iron-limiting conditions
    • Palmer C.M., et al. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 2013, 9:e1003953.
    • (2013) PLoS Genet. , vol.9 , pp. e1003953
    • Palmer, C.M.1
  • 36
    • 84923068072 scopus 로고    scopus 로고
    • β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots
    • Zamioudis C., et al. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014, 204:368-379.
    • (2014) New Phytol. , vol.204 , pp. 368-379
    • Zamioudis, C.1
  • 37
    • 48949120159 scopus 로고    scopus 로고
    • MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis
    • Van der Ent S., et al. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 2008, 146:1293-1304.
    • (2008) Plant Physiol. , vol.146 , pp. 1293-1304
    • Van der Ent, S.1
  • 38
    • 79955153738 scopus 로고    scopus 로고
    • A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants
    • Garcia M.J., et al. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants. Plant Physiol. Biochem. 2011, 49:537-544.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 537-544
    • Garcia, M.J.1
  • 39
    • 82755162848 scopus 로고    scopus 로고
    • Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide
    • Meiser J., et al. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol. 2011, 157:2154-2166.
    • (2011) Plant Physiol. , vol.157 , pp. 2154-2166
    • Meiser, J.1
  • 40
    • 36348929536 scopus 로고    scopus 로고
    • Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots
    • Graziano M., Lamattina L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 2007, 52:949-960.
    • (2007) Plant J. , vol.52 , pp. 949-960
    • Graziano, M.1    Lamattina, L.2
  • 41
    • 84872140823 scopus 로고    scopus 로고
    • The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana
    • Yang J.L., et al. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytol. 2013, 197:815-824.
    • (2013) New Phytol. , vol.197 , pp. 815-824
    • Yang, J.L.1
  • 42
    • 79959836635 scopus 로고    scopus 로고
    • Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis
    • Lingam S., et al. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 2011, 23:1815-1829.
    • (2011) Plant Cell , vol.23 , pp. 1815-1829
    • Lingam, S.1
  • 43
    • 79958189549 scopus 로고    scopus 로고
    • Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses
    • Sivitz A., et al. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Plant J. 2011, 66:1044-1052.
    • (2011) Plant J. , vol.66 , pp. 1044-1052
    • Sivitz, A.1
  • 44
    • 77956594493 scopus 로고    scopus 로고
    • Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis
    • Garcia M.J., et al. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 2010, 61:3885-3899.
    • (2010) J. Exp. Bot. , vol.61 , pp. 3885-3899
    • Garcia, M.J.1
  • 45
    • 18844385514 scopus 로고    scopus 로고
    • Structure of eukaryotic Mediator complexes
    • Chadick J.Z., Asturias F.J. Structure of eukaryotic Mediator complexes. Trends Biochem. Sci. 2005, 30:264-271.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 264-271
    • Chadick, J.Z.1    Asturias, F.J.2
  • 46
    • 84895929144 scopus 로고    scopus 로고
    • The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25
    • Yang Y., et al. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. Plant J. 2014, 77:838-851.
    • (2014) Plant J. , vol.77 , pp. 838-851
    • Yang, Y.1
  • 47
    • 84904046186 scopus 로고    scopus 로고
    • Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis
    • Zhang Y., et al. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis. New Phytol. 2014, 203:770-783.
    • (2014) New Phytol. , vol.203 , pp. 770-783
    • Zhang, Y.1
  • 48
    • 55549092089 scopus 로고    scopus 로고
    • Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock
    • Knight H., et al. Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol. 2008, 148:293-303.
    • (2008) Plant Physiol. , vol.148 , pp. 293-303
    • Knight, H.1
  • 49
    • 84873257641 scopus 로고    scopus 로고
    • Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis
    • Hong S., et al. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiol. 2013, 161:893-903.
    • (2013) Plant Physiol. , vol.161 , pp. 893-903
    • Hong, S.1
  • 50
    • 84875217300 scopus 로고    scopus 로고
    • Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function
    • Salome P.A., et al. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO J. 2013, 32:511-523.
    • (2013) EMBO J. , vol.32 , pp. 511-523
    • Salome, P.A.1
  • 51
    • 84874619733 scopus 로고    scopus 로고
    • Iron is involved in the maintenance of circadian period length in Arabidopsis
    • Chen Y.Y., et al. Iron is involved in the maintenance of circadian period length in Arabidopsis. Plant Physiol. 2013, 161:1409-1420.
    • (2013) Plant Physiol. , vol.161 , pp. 1409-1420
    • Chen, Y.Y.1
  • 52
    • 84899816938 scopus 로고    scopus 로고
    • Iron around the clock
    • Tissot N., et al. Iron around the clock. Plant Sci. 2014, 224:112-119.
    • (2014) Plant Sci. , vol.224 , pp. 112-119
    • Tissot, N.1
  • 53
    • 84871738828 scopus 로고    scopus 로고
    • Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level
    • Aksoy E., et al. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Plant Physiol. 2013, 161:330-345.
    • (2013) Plant Physiol. , vol.161 , pp. 330-345
    • Aksoy, E.1
  • 54
    • 84896709256 scopus 로고    scopus 로고
    • Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a K-homology domain-containing protein
    • Jeong I.S., et al. Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a K-homology domain-containing protein. PLoS ONE 2013, 8:e80509.
    • (2013) PLoS ONE , vol.8 , pp. e80509
    • Jeong, I.S.1
  • 55
    • 34347398218 scopus 로고    scopus 로고
    • Components of the Arabidopsis mRNA decapping complex are required for early seedling development
    • Goeres D.C., et al. Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 2007, 19:1549-1564.
    • (2007) Plant Cell , vol.19 , pp. 1549-1564
    • Goeres, D.C.1
  • 56
    • 84892372409 scopus 로고    scopus 로고
    • SKB1/PRMT5-mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in Arabidopsis thaliana
    • Fan H., et al. SKB1/PRMT5-mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in Arabidopsis thaliana. Plant J. 2014, 77:209-221.
    • (2014) Plant J. , vol.77 , pp. 209-221
    • Fan, H.1
  • 57
    • 84906251511 scopus 로고    scopus 로고
    • Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana
    • Wang X., et al. Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. Mol. Plant 2014, 7:1303-1315.
    • (2014) Mol. Plant , vol.7 , pp. 1303-1315
    • Wang, X.1
  • 58
    • 44949220180 scopus 로고    scopus 로고
    • Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis
    • Yu X., et al. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7618-7623.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7618-7623
    • Yu, X.1
  • 59
    • 0033137141 scopus 로고    scopus 로고
    • The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range
    • Korshunova Y.O., et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 1999, 40:37-44.
    • (1999) Plant Mol. Biol. , vol.40 , pp. 37-44
    • Korshunova, Y.O.1
  • 60
    • 0034710975 scopus 로고    scopus 로고
    • Altered selectivity in an Arabidopsis metal transporter
    • Rogers E.E., et al. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:12356-12360.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 12356-12360
    • Rogers, E.E.1
  • 61
    • 84884412215 scopus 로고    scopus 로고
    • The extracellular loop of IRT1 ZIP protein - the chosen one for zinc?
    • Potocki S., et al. The extracellular loop of IRT1 ZIP protein - the chosen one for zinc?. J. Inorg. Biochem. 2013, 127:246-252.
    • (2013) J. Inorg. Biochem. , vol.127 , pp. 246-252
    • Potocki, S.1
  • 62
    • 80052001379 scopus 로고    scopus 로고
    • Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants
    • Barberon M., et al. Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:450-458.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 450-458
    • Barberon, M.1
  • 63
    • 58749109023 scopus 로고    scopus 로고
    • Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes
    • Hruz T., et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008, 2008:420747.
    • (2008) Adv. Bioinformatics , vol.2008 , pp. 420747
    • Hruz, T.1
  • 64
    • 35348827308 scopus 로고    scopus 로고
    • A shout-out to stomatal development: how the bHLH proteins SPEECHLESS, MUTE and FAMA regulate cell division and cell fate
    • Lampard G.R., Bergmann D.C. A shout-out to stomatal development: how the bHLH proteins SPEECHLESS, MUTE and FAMA regulate cell division and cell fate. Plant Signal. Behav. 2007, 2:290-292.
    • (2007) Plant Signal. Behav. , vol.2 , pp. 290-292
    • Lampard, G.R.1    Bergmann, D.C.2
  • 65
    • 44249114568 scopus 로고    scopus 로고
    • Cell identity mediates the response of Arabidopsis roots to abiotic stress
    • Dinneny J.R., et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 2008, 320:942-945.
    • (2008) Science , vol.320 , pp. 942-945
    • Dinneny, J.R.1
  • 66
    • 79955153521 scopus 로고    scopus 로고
    • Suppression of Fe deficiency gene expression by jasmonate
    • Maurer F., et al. Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol. Biochem. 2011, 49:530-536.
    • (2011) Plant Physiol. Biochem. , vol.49 , pp. 530-536
    • Maurer, F.1
  • 67
    • 84892698729 scopus 로고    scopus 로고
    • Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis
    • Matsuoka K., et al. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis. Plant Cell Physiol. 2014, 55:87-98.
    • (2014) Plant Cell Physiol. , vol.55 , pp. 87-98
    • Matsuoka, K.1
  • 69
    • 77956812192 scopus 로고    scopus 로고
    • Natural variation of transcriptional auxin response networks in Arabidopsis thaliana
    • Delker C., et al. Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. Plant Cell 2010, 22:2184-2200.
    • (2010) Plant Cell , vol.22 , pp. 2184-2200
    • Delker, C.1
  • 70
    • 84855902738 scopus 로고    scopus 로고
    • Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots
    • Stein R.J., Waters B.M. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J. Exp. Bot. 2012, 63:1039-1055.
    • (2012) J. Exp. Bot. , vol.63 , pp. 1039-1055
    • Stein, R.J.1    Waters, B.M.2
  • 71
    • 84859364037 scopus 로고    scopus 로고
    • Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean
    • Peiffer G.A., et al. Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiol. 2012, 158:1745-1754.
    • (2012) Plant Physiol. , vol.158 , pp. 1745-1754
    • Peiffer, G.A.1
  • 72
    • 84859039846 scopus 로고    scopus 로고
    • Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis
    • Bernal M., et al. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 2012, 24:738-761.
    • (2012) Plant Cell , vol.24 , pp. 738-761
    • Bernal, M.1
  • 73
    • 79957731183 scopus 로고    scopus 로고
    • Phosphate sensing in root development
    • Abel S. Phosphate sensing in root development. Curr. Opin. Plant Biol. 2011, 14:303-309.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 303-309
    • Abel, S.1
  • 74
    • 77953199770 scopus 로고    scopus 로고
    • High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions
    • Cailliatte R., et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 2010, 22:904-917.
    • (2010) Plant Cell , vol.22 , pp. 904-917
    • Cailliatte, R.1
  • 75
    • 84901035381 scopus 로고    scopus 로고
    • Toward new perspectives on the interaction of iron and sulfur metabolism in plants
    • Forieri I., et al. Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front. Plant Sci. 2013, 4:357.
    • (2013) Front. Plant Sci. , vol.4 , pp. 357
    • Forieri, I.1
  • 76
    • 84857702759 scopus 로고    scopus 로고
    • Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution
    • Giehl R.F., et al. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 2012, 24:33-49.
    • (2012) Plant Cell , vol.24 , pp. 33-49
    • Giehl, R.F.1
  • 77
    • 84899132080 scopus 로고    scopus 로고
    • Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots
    • Blum A., et al. Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots. Plant Signal. Behav. 2014, 9:e28787.
    • (2014) Plant Signal. Behav. , vol.9 , pp. e28787
    • Blum, A.1
  • 79
    • 20444484600 scopus 로고    scopus 로고
    • Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato
    • Brumbarova T., Bauer P. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiol. 2005, 137:1018-1026.
    • (2005) Plant Physiol. , vol.137 , pp. 1018-1026
    • Brumbarova, T.1    Bauer, P.2
  • 80
    • 0345392723 scopus 로고    scopus 로고
    • Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control
    • Connolly E.L., et al. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 2003, 133:1102-1110.
    • (2003) Plant Physiol. , vol.133 , pp. 1102-1110
    • Connolly, E.L.1
  • 81
    • 48549096254 scopus 로고    scopus 로고
    • Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues
    • Kerkeb L., et al. Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues. Plant Physiol. 2008, 146:1964-1973.
    • (2008) Plant Physiol. , vol.146 , pp. 1964-1973
    • Kerkeb, L.1
  • 82
    • 84861883418 scopus 로고    scopus 로고
    • +-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis
    • +-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 2012, 159:632-641.
    • (2012) Plant Physiol. , vol.159 , pp. 632-641
    • Takahashi, K.1
  • 83
    • 84899156295 scopus 로고    scopus 로고
    • SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1
    • Ivanov R., et al. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. Plant Cell 2014, 26:1294-1307.
    • (2014) Plant Cell , vol.26 , pp. 1294-1307
    • Ivanov, R.1
  • 84
    • 33750974487 scopus 로고    scopus 로고
    • Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A
    • Ortiz-Zapater E., et al. Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J. 2006, 48:757-770.
    • (2006) Plant J. , vol.48 , pp. 757-770
    • Ortiz-Zapater, E.1
  • 85
    • 69949171525 scopus 로고    scopus 로고
    • Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea
    • Ivanov R., Gaude T. Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell 2009, 21:2107-2117.
    • (2009) Plant Cell , vol.21 , pp. 2107-2117
    • Ivanov, R.1    Gaude, T.2
  • 86
    • 84901848848 scopus 로고    scopus 로고
    • Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis
    • Barberon M., et al. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8293-8298.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8293-8298
    • Barberon, M.1
  • 87
    • 84907727998 scopus 로고    scopus 로고
    • Plant nutrition: root transporters on the move
    • Zelazny E., Vert G. Plant nutrition: root transporters on the move. Plant Physiol. 2014, 166:500-508.
    • (2014) Plant Physiol. , vol.166 , pp. 500-508
    • Zelazny, E.1    Vert, G.2
  • 88
    • 84884685597 scopus 로고    scopus 로고
    • IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis
    • Shin L.J., et al. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. Plant Cell 2013, 25:3039-3051.
    • (2013) Plant Cell , vol.25 , pp. 3039-3051
    • Shin, L.J.1
  • 89
    • 84877293857 scopus 로고    scopus 로고
    • A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport
    • Steinberg F., et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 2013, 15:461-471.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 461-471
    • Steinberg, F.1
  • 90
    • 84901851577 scopus 로고    scopus 로고
    • The ESCRT machinery: from the plasma membrane to endosomes and back again
    • Schuh A.L., Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit. Rev. Biochem. Mol. Biol. 2014, 49:242-261.
    • (2014) Crit. Rev. Biochem. Mol. Biol. , vol.49 , pp. 242-261
    • Schuh, A.L.1    Audhya, A.2
  • 91
    • 77957744766 scopus 로고    scopus 로고
    • Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis
    • Chen W.W., et al. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol. 2010, 154:810-819.
    • (2010) Plant Physiol. , vol.154 , pp. 810-819
    • Chen, W.W.1
  • 92
    • 55249096281 scopus 로고    scopus 로고
    • Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway
    • Seguela M., et al. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J. 2008, 55:289-300.
    • (2008) Plant J. , vol.55 , pp. 289-300
    • Seguela, M.1
  • 93
    • 84867874432 scopus 로고    scopus 로고
    • Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency
    • Wang B., et al. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Ann. Bot. 2012, 110:681-688.
    • (2012) Ann. Bot. , vol.110 , pp. 681-688
    • Wang, B.1
  • 94
    • 77951997053 scopus 로고    scopus 로고
    • A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots
    • Li W., Schmidt W. A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J. 2010, 62:330-343.
    • (2010) Plant J. , vol.62 , pp. 330-343
    • Li, W.1    Schmidt, W.2
  • 95
    • 73249138781 scopus 로고    scopus 로고
    • Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis
    • Rubin G., et al. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 2009, 21:3567-3584.
    • (2009) Plant Cell , vol.21 , pp. 3567-3584
    • Rubin, G.1
  • 96
    • 84879705405 scopus 로고    scopus 로고
    • Interplay between sucrose and folate modulates auxin signaling in Arabidopsis
    • Stokes M.E., et al. Interplay between sucrose and folate modulates auxin signaling in Arabidopsis. Plant Physiol. 2013, 162:1552-1565.
    • (2013) Plant Physiol. , vol.162 , pp. 1552-1565
    • Stokes, M.E.1
  • 97
    • 29544450289 scopus 로고    scopus 로고
    • Comparison of lignin deposition in three ectopic lignification mutants
    • Rogers L.A., et al. Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 2005, 168:123-140.
    • (2005) New Phytol. , vol.168 , pp. 123-140
    • Rogers, L.A.1
  • 98
    • 77649303612 scopus 로고    scopus 로고
    • Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3
    • Abdeen A., et al. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 2010, 11:69.
    • (2010) BMC Genomics , vol.11 , pp. 69
    • Abdeen, A.1
  • 99
    • 34247200577 scopus 로고    scopus 로고
    • The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
    • Kilian J., et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007, 50:347-363.
    • (2007) Plant J. , vol.50 , pp. 347-363
    • Kilian, J.1
  • 100
    • 84874284215 scopus 로고    scopus 로고
    • Changes in mRNA stability associated with cold stress in Arabidopsis cells
    • Chiba Y., et al. Changes in mRNA stability associated with cold stress in Arabidopsis cells. Plant Cell Physiol. 2013, 54:180-194.
    • (2013) Plant Cell Physiol. , vol.54 , pp. 180-194
    • Chiba, Y.1
  • 101
    • 57449111072 scopus 로고    scopus 로고
    • Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana
    • Branco-Price C., et al. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J. 2008, 56:743-755.
    • (2008) Plant J. , vol.56 , pp. 743-755
    • Branco-Price, C.1
  • 102
    • 77950631411 scopus 로고    scopus 로고
    • Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways
    • Weisman D., et al. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol. 2010, 10:59.
    • (2010) BMC Plant Biol. , vol.10 , pp. 59
    • Weisman, D.1
  • 103
    • 84874509475 scopus 로고    scopus 로고
    • Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases
    • Foley R.C., et al. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS ONE 2013, 8:e56814.
    • (2013) PLoS ONE , vol.8 , pp. e56814
    • Foley, R.C.1
  • 104
    • 62049085316 scopus 로고    scopus 로고
    • Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis
    • Favory J.J., et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009, 28:591-601.
    • (2009) EMBO J. , vol.28 , pp. 591-601
    • Favory, J.J.1
  • 105
    • 0842299514 scopus 로고    scopus 로고
    • Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis
    • Ulm R., et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:1397-1402.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 1397-1402
    • Ulm, R.1
  • 106
    • 84860559883 scopus 로고    scopus 로고
    • Plastids are major regulators of light signaling in Arabidopsis
    • Ruckle M.E., et al. Plastids are major regulators of light signaling in Arabidopsis. Plant Physiol. 2012, 159:366-390.
    • (2012) Plant Physiol. , vol.159 , pp. 366-390
    • Ruckle, M.E.1
  • 107
    • 84872840030 scopus 로고    scopus 로고
    • Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis
    • Hu W., et al. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1542-1547.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1542-1547
    • Hu, W.1
  • 108
    • 84865526135 scopus 로고    scopus 로고
    • Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
    • Hornitschek P., et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 2012, 71:699-711.
    • (2012) Plant J. , vol.71 , pp. 699-711
    • Hornitschek, P.1
  • 109
    • 47749083127 scopus 로고    scopus 로고
    • The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access
    • Goda H., et al. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. 2008, 55:526-542.
    • (2008) Plant J. , vol.55 , pp. 526-542
    • Goda, H.1
  • 110
    • 23944449143 scopus 로고    scopus 로고
    • Transcription switches for protoxylem and metaxylem vessel formation
    • Kubo M., et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005, 19:1855-1860.
    • (2005) Genes Dev. , vol.19 , pp. 1855-1860
    • Kubo, M.1
  • 111
    • 33749163234 scopus 로고    scopus 로고
    • BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth
    • Mouchel C.F., et al. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 2006, 443:458-461.
    • (2006) Nature , vol.443 , pp. 458-461
    • Mouchel, C.F.1
  • 112
    • 72449167897 scopus 로고    scopus 로고
    • A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana
    • Tsuchisaka A., et al. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 2009, 183:979-1003.
    • (2009) Genetics , vol.183 , pp. 979-1003
    • Tsuchisaka, A.1
  • 113
    • 84888203945 scopus 로고    scopus 로고
    • Salicylic acid activates DNA damage responses to potentiate plant immunity
    • Yan S., et al. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 2013, 52:602-610.
    • (2013) Mol. Cell , vol.52 , pp. 602-610
    • Yan, S.1
  • 114
    • 84859941964 scopus 로고    scopus 로고
    • Site-specific methylation in gene coding region underlies transcriptional silencing of the phytochrome A epiallele in Arabidopsis thaliana
    • Rangani G., et al. Site-specific methylation in gene coding region underlies transcriptional silencing of the phytochrome A epiallele in Arabidopsis thaliana. Plant Mol. Biol. 2012, 79:191-202.
    • (2012) Plant Mol. Biol. , vol.79 , pp. 191-202
    • Rangani, G.1
  • 115
    • 34248157134 scopus 로고    scopus 로고
    • Signals from chloroplasts converge to regulate nuclear gene expression
    • Koussevitzky S., et al. Signals from chloroplasts converge to regulate nuclear gene expression. Science 2007, 316:715-719.
    • (2007) Science , vol.316 , pp. 715-719
    • Koussevitzky, S.1
  • 116
    • 78649523108 scopus 로고    scopus 로고
    • The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis
    • Albrecht V., et al. The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis. Plant Cell 2010, 22:3423-3438.
    • (2010) Plant Cell , vol.22 , pp. 3423-3438
    • Albrecht, V.1
  • 117
    • 77950535445 scopus 로고    scopus 로고
    • The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis
    • Munoz-Bertomeu J., et al. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol. 2010, 152:1830-1841.
    • (2010) Plant Physiol. , vol.152 , pp. 1830-1841
    • Munoz-Bertomeu, J.1
  • 118
    • 84865333284 scopus 로고    scopus 로고
    • Downregulation of the delta-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis
    • Geisler D.A., et al. Downregulation of the delta-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. Plant Cell 2012, 24:2792-2811.
    • (2012) Plant Cell , vol.24 , pp. 2792-2811
    • Geisler, D.A.1
  • 119
    • 79952285130 scopus 로고    scopus 로고
    • Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA
    • Hachez C., et al. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. Plant Physiol. 2011, 155:1458-1472.
    • (2011) Plant Physiol. , vol.155 , pp. 1458-1472
    • Hachez, C.1
  • 120
    • 80055034922 scopus 로고    scopus 로고
    • Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis
    • Pillitteri L.J., et al. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. Plant Cell 2011, 23:3260-3275.
    • (2011) Plant Cell , vol.23 , pp. 3260-3275
    • Pillitteri, L.J.1
  • 121
    • 33745219811 scopus 로고    scopus 로고
    • Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling
    • Mandaokar A., et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006, 46:984-1008.
    • (2006) Plant J. , vol.46 , pp. 984-1008
    • Mandaokar, A.1
  • 122
    • 33750076662 scopus 로고    scopus 로고
    • Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis
    • Cao D., et al. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol. 2006, 142:509-525.
    • (2006) Plant Physiol. , vol.142 , pp. 509-525
    • Cao, D.1
  • 123
    • 79953072914 scopus 로고    scopus 로고
    • The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis
    • Borg M., et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 2011, 23:534-549.
    • (2011) Plant Cell , vol.23 , pp. 534-549
    • Borg, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.