-
1
-
-
0035051171
-
Carbon materials for the electrochemical storage of energy in capacitors
-
Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001;39:937-50.
-
(2001)
Carbon
, vol.39
, pp. 937-950
-
-
Frackowiak, E.1
Béguin, F.2
-
2
-
-
84903362570
-
Where do batteries end and supercapacitors begin
-
Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science 2014;343:1210-1.
-
(2014)
Science
, vol.343
, pp. 1210-1211
-
-
Simon, P.1
Gogotsi, Y.2
Dunn, B.3
-
3
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7:845-54.
-
(2008)
Nat Mater
, vol.7
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
4
-
-
53749090615
-
Dependence of electric double layer capacitance of activated carbons on the types of pores and their surface areas
-
Wang LH, Masahiro T, Michio I. Dependence of electric double layer capacitance of activated carbons on the types of pores and their surface areas. New Carbon Mater 2008;23(2):111-5.
-
(2008)
New Carbon Mater
, vol.23
, Issue.2
, pp. 111-115
-
-
Wang, L.H.1
Masahiro, T.2
Michio, I.3
-
5
-
-
75749118884
-
Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors
-
He X, Geng Y, Qiu J, Zheng M, Long S, Zhang X. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors. Carbon 2010;48:1662-9.
-
(2010)
Carbon
, vol.48
, pp. 1662-1669
-
-
He, X.1
Geng, Y.2
Qiu, J.3
Zheng, M.4
Long, S.5
Zhang, X.6
-
6
-
-
73249152435
-
New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution
-
Stepniak I, Ciszewski A. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution. J Power Sources 2010;195:2564-9.
-
(2010)
J Power Sources
, vol.195
, pp. 2564-2569
-
-
Stepniak, I.1
Ciszewski, A.2
-
7
-
-
84894076410
-
Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes
-
Kalupson J, Ma D, Randall CA, Rajagopalan R, Adu K. Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. J Phys Chem C 2014;118(6):2943-52.
-
(2014)
J Phys Chem C
, vol.118
, Issue.6
, pp. 2943-2952
-
-
Kalupson, J.1
Ma, D.2
Randall, C.A.3
Rajagopalan, R.4
Adu, K.5
-
8
-
-
69549113211
-
Effect of temperature on the capacitance of carbon nanotube supercapacitors
-
Masarapu C, Zeng HF, Kai HH,Wei B. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009;3(8):2199-206.
-
(2009)
ACS Nano
, vol.3
, Issue.8
, pp. 2199-2206
-
-
Masarapu, C.1
Zeng, H.F.2
Kai, H.H.3
Wei, B.4
-
9
-
-
84887598283
-
Three-dimensionally ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical double-layer capacitors with ionic liquid electrolytes
-
Vu A, Li X, Phillips J, Han A, Smyrl WH, Bühlmann P, et al. Three-dimensionally ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical double-layer capacitors with ionic liquid electrolytes. Chem Mater 2013;25:4137-48.
-
(2013)
Chem Mater
, vol.25
, pp. 4137-4148
-
-
Vu, A.1
Li, X.2
Phillips, J.3
Han, A.4
Smyrl, W.H.5
Bühlmann, P.6
-
10
-
-
71249121785
-
Mesoporous activated carbon fiber as electrode material for highperformance electrochemical double layer capacitors with ionic liquid electrolyte
-
Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. Mesoporous activated carbon fiber as electrode material for highperformance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 2010;195:2118-24.
-
(2010)
J Power Sources
, vol.195
, pp. 2118-2124
-
-
Xu, B.1
Wu, F.2
Chen, R.3
Cao, G.4
Chen, S.5
Yang, Y.6
-
11
-
-
79951656483
-
High throughput preparation of large area transparent electrodes using non-functionalized graphene nanoribbons
-
Zhu Y, Lu W, Sun Z, Kosynkin DV, Yao J, Tour JM. High throughput preparation of large area transparent electrodes using non-functionalized graphene nanoribbons. Chem Mater 2011;23:935-9.
-
(2011)
Chem Mater
, vol.23
, pp. 935-939
-
-
Zhu, Y.1
Lu, W.2
Sun, Z.3
Kosynkin, D.V.4
Yao, J.5
Tour, J.M.6
-
12
-
-
77955877347
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010;132:1-5.
-
(2010)
Nat Nanotechnol
, vol.132
, pp. 1-5
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
Xu, X.4
Park, J.S.5
Zheng, Y.6
-
13
-
-
84859736895
-
Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers
-
Luan VH, Tien HN, Cuong TV, Kong BS, Ching JS, Kim EJ, et al. Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. J Mater Chem 2012;22:8649-53.
-
(2012)
J Mater Chem
, vol.22
, pp. 8649-8653
-
-
Luan, V.H.1
Tien, H.N.2
Cuong, T.V.3
Kong, B.S.4
Ching, J.S.5
Kim, E.J.6
-
14
-
-
44949199297
-
Functionalized graphene sheets for polymer nanocomposites
-
Ramanathan T, Abdala AA, Stankovich S, Dikn DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 2008;3:327-31.
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 327-331
-
-
Ramanathan, T.1
Abdala, A.A.2
Stankovich, S.3
Dikn, D.A.4
Herrera-Alonso, M.5
Piner, R.D.6
-
15
-
-
84892827070
-
Application of nitrogen-doped grapheme nanosheets in electrically conductive adhesives
-
Pu NW, Peng YY, Wng PC, Chen CY, Shi JN, Liu YM, et al. Application of nitrogen-doped grapheme nanosheets in electrically conductive adhesives. Carbon 2014;67:449-56.
-
(2014)
Carbon
, vol.67
, pp. 449-456
-
-
Pu, N.W.1
Peng, Y.Y.2
Wng, P.C.3
Chen, C.Y.4
Shi, J.N.5
Liu, Y.M.6
-
16
-
-
84868111998
-
Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives
-
Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 2013;51:365-72.
-
(2013)
Carbon
, vol.51
, pp. 365-372
-
-
Shi, J.N.1
Ger, M.D.2
Liu, Y.M.3
Fan, Y.C.4
Wen, N.T.5
Lin, C.K.6
-
17
-
-
84875683271
-
In situ fabrication of porous graphene electrodes for high-performance energy storage
-
Wang ZL, Xu D,Wang HG,Wu Z, Zhang XB. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 2013;7(3):2422-30.
-
(2013)
ACS Nano
, vol.7
, Issue.3
, pp. 2422-2430
-
-
Wang, Z.L.1
Xu, D.2
Wang, H.G.3
Wu, Z.4
Zhang, X.B.5
-
18
-
-
67650658822
-
Electrochemical properties of graphene paper electrodes used in lithium batteries
-
Wang C, Li D, Too CO,Wallace GG. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 2009;21:2604-6.
-
(2009)
Chem Mater
, vol.21
, pp. 2604-2606
-
-
Wang, C.1
Li, D.2
Too, C.O.3
Wallace, G.G.4
-
19
-
-
77957061092
-
Graphenewrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries
-
Zhou G,Wang DW, Li F, Zhang L, Li N,Wu ZS, et al. Graphenewrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 2010;22:5306-13.
-
(2010)
Chem Mater
, vol.22
, pp. 5306-5313
-
-
Zhou, G.1
Wang, D.W.2
Li, F.3
Zhang, L.4
Li, N.5
Wu, Z.S.6
-
20
-
-
80053340541
-
Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection
-
Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 2011;5(9):6955-64.
-
(2011)
ACS Nano
, vol.5
, Issue.9
, pp. 6955-6964
-
-
Li, W.1
Geng, X.2
Guo, Y.3
Rong, J.4
Gong, Y.5
Wu, L.6
-
21
-
-
77950140364
-
Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells
-
Qu L, Liu Y, Beak JB, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010;4(3):1321-6.
-
(2010)
ACS Nano
, vol.4
, Issue.3
, pp. 1321-1326
-
-
Qu, L.1
Liu, Y.2
Beak, J.B.3
Dai, L.4
-
22
-
-
84882951895
-
Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced grapheme oxide
-
Carrera-Cerritos R, Baglio V, Aricò AS, Ledesma-Garcá J, Sgroi MF, Pullini D, et al. Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced grapheme oxide. Appl Catal B 2014;144:554-60.
-
(2014)
Appl Catal B
, vol.144
, pp. 554-560
-
-
Carrera-Cerritos, R.1
Baglio, V.2
Aricò, A.S.3
Ledesma-Garcá, J.4
Sgroi, M.F.5
Pullini, D.6
-
23
-
-
77954634200
-
Graphene-based materials as supercapacitor electrodes
-
Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem 2010;20:5983-92.
-
(2010)
J Mater Chem
, vol.20
, pp. 5983-5992
-
-
Zhang, L.L.1
Zhou, R.2
Zhao, X.S.3
-
24
-
-
84862776795
-
High-performance supercapacitor electrodes based on highly corrugated graphene sheets
-
Yan J, Liu J, Fan Z, Wei T, Zhang L. High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 2012;50:2179-88.
-
(2012)
Carbon
, vol.50
, pp. 2179-2188
-
-
Yan, J.1
Liu, J.2
Fan, Z.3
Wei, T.4
Zhang, L.5
-
25
-
-
78650085858
-
Graphene-based supercapacitor with an ultrahigh energy density
-
Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010;10:4863-8.
-
(2010)
Nano Lett
, vol.10
, pp. 4863-4868
-
-
Liu, C.1
Yu, Z.2
Neff, D.3
Zhamu, A.4
Jang, B.Z.5
-
26
-
-
84872530239
-
A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors
-
Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, et al. A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim Acta 2013;91:173-8.
-
(2013)
Electrochim Acta
, vol.91
, pp. 173-178
-
-
Jiang, Y.1
Chen, D.2
Song, J.3
Jiao, Z.4
Ma, Q.5
Zhang, H.6
-
27
-
-
84886258921
-
RuO2/ graphene hybrid material for high performance electrochemical capacitor
-
Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, et al. RuO2/ graphene hybrid material for high performance electrochemical capacitor. J Power Sources 2014;248:407-15.
-
(2014)
J Power Sources
, vol.248
, pp. 407-415
-
-
Deng, L.1
Wang, J.2
Zhu, G.3
Kang, L.4
Hao, Z.5
Lei, Z.6
-
28
-
-
84868519481
-
Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene carbon nanotube structure for ultrahigh-performance electrochemical capacitors
-
Li SM, Wang YS, Yang SY, Liu CH, Chang KH, Tien HW, et al. Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene carbon nanotube structure for ultrahigh-performance electrochemical capacitors. Journal of Power Source 2013;225:347-55.
-
(2013)
Journal of Power Source
, vol.225
, pp. 347-355
-
-
Li, S.M.1
Wang, Y.S.2
Yang, S.Y.3
Liu, C.H.4
Chang, K.H.5
Tien, H.W.6
-
29
-
-
84862854745
-
Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors
-
Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 2012;6(6):5404-12.
-
(2012)
ACS Nano
, vol.6
, Issue.6
, pp. 5404-5412
-
-
Zhao, X.1
Zhang, L.2
Murali, S.3
Stoller, M.D.4
Zhang, Q.5
Zhu, Y.6
-
30
-
-
77952858859
-
Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials
-
Wang H, Casalongue HS, Liang Y, Dai H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 2010;132:7472-7.
-
(2010)
J Am Chem Soc
, vol.132
, pp. 7472-7477
-
-
Wang, H.1
Casalongue, H.S.2
Liang, Y.3
Dai, H.4
-
31
-
-
84879979330
-
High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications
-
Basnayaka PA, Ram MK, Stefanakos L, Kumar A. High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater Chem Phys 2013;141:263-71.
-
(2013)
Mater Chem Phys
, vol.141
, pp. 263-271
-
-
Basnayaka, P.A.1
Ram, M.K.2
Stefanakos, L.3
Kumar, A.4
-
32
-
-
70449526688
-
Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance
-
Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010;48:489-93.
-
(2010)
Carbon
, vol.48
, pp. 489-493
-
-
Yan, J.1
Wei, T.2
Shao, B.3
Fan, Z.4
Qian, W.5
Zhang, M.6
-
33
-
-
77049117587
-
Graphene/polyaniline nanofiber composites as supercapacitor electrodes
-
Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 2010;22:1392-401.
-
(2010)
Chem Mater
, vol.22
, pp. 1392-1401
-
-
Zhang, K.1
Zhang, L.L.2
Zhao, X.S.3
Wu, J.4
-
34
-
-
79551642541
-
Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors
-
Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 2011;21:2374-80.
-
(2011)
J Mater Chem
, vol.21
, pp. 2374-2380
-
-
Yang, S.Y.1
Chang, K.H.2
Tien, H.W.3
Lee, Y.F.4
Li, S.M.5
Wang, Y.S.6
-
35
-
-
84875077478
-
Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors
-
Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2013;2:294-303.
-
(2013)
Nano Energy
, vol.2
, pp. 294-303
-
-
Wang, W.1
Guo, S.2
Penchev, M.3
Ruiz, I.4
Bozhilov, K.N.5
Yan, D.6
-
36
-
-
81755176072
-
Preventing graphene sheets from restacking for highcapacitance performance
-
Wang Y, Wu Y, Huang Y, Zhang F, Yang X, Ma Y, et al. Preventing graphene sheets from restacking for highcapacitance performance. Phys Chem C 2011;115:23192-7.
-
(2011)
Phys Chem C
, vol.115
, pp. 23192-23197
-
-
Wang, Y.1
Wu, Y.2
Huang, Y.3
Zhang, F.4
Yang, X.5
Ma, Y.6
-
37
-
-
80455132479
-
Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance
-
Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy AK. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem Mater 2011;23:4810-6.
-
(2011)
Chem Mater
, vol.23
, pp. 4810-4816
-
-
Du, F.1
Yu, D.2
Dai, L.3
Ganguli, S.4
Varshney, V.5
Roy, A.K.6
-
38
-
-
81855183298
-
Compression and aggregation-resistant particles of crumpled soft sheets
-
Luo J, Jang HD, Sun T, Xiao L, He Z, Katsoulidis AP, et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 2011;5(11):8943-9.
-
(2011)
ACS Nano
, vol.5
, Issue.11
, pp. 8943-8949
-
-
Luo, J.1
Jang, H.D.2
Sun, T.3
Xiao, L.4
He, Z.5
Katsoulidis, A.P.6
-
39
-
-
84874421671
-
Effect of sheet morphology on the scalability of graphene-based ultracapacitors
-
Luo J, Jang HD, Huang J. Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 2013;7(2):1464-71.
-
(2013)
ACS Nano
, vol.7
, Issue.2
, pp. 1464-1471
-
-
Luo, J.1
Jang, H.D.2
Huang, J.3
-
40
-
-
77955529587
-
Self-assembled graphene hydrogel via a one-step hydrothermal process
-
Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010;4(7):4324-30.
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
Shi, G.4
-
41
-
-
80052152264
-
Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability
-
Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 2011;115:17206-12.
-
(2011)
J Phys Chem C
, vol.115
, pp. 17206-17212
-
-
Zhang, L.1
Shi, G.2
-
42
-
-
84855862324
-
Easy synthesis of porous graphene nanosheets and their use in supercapacitors
-
Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 2012;50:1699-712.
-
(2012)
Carbon
, vol.50
, pp. 1699-1712
-
-
Fan, Z.1
Zhao, Q.2
Li, T.3
Yan, J.4
Ren, Y.5
Feng, J.6
-
43
-
-
84883220924
-
Activated graphenebased carbons as supercapacitor electrodes with macro-and mesopores
-
Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphenebased carbons as supercapacitor electrodes with macro-and mesopores. ACS Nano 2013;7(8):6899-905.
-
(2013)
ACS Nano
, vol.7
, Issue.8
, pp. 6899-6905
-
-
Kim, T.Y.1
Jung, G.2
Yoo, S.3
Suh, K.S.4
Ruoff, R.S.5
-
44
-
-
81855177540
-
Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications
-
Zhao X, Hayner CM, Kung MC, Kung HH. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011;5(11):8739-49.
-
(2011)
ACS Nano
, vol.5
, Issue.11
, pp. 8739-8749
-
-
Zhao, X.1
Hayner, C.M.2
Kung, M.C.3
Kung, H.H.4
-
45
-
-
33744471173
-
Functionalized single graphene sheets derived from splitting graphite oxide
-
Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 2006;110:8535-9.
-
(2006)
J Phys Chem B
, vol.110
, pp. 8535-8539
-
-
Schniepp, H.C.1
Li, J.L.2
McAllister, M.J.3
Sai, H.4
Herrera-Alonso, M.5
Adamson, D.H.6
-
46
-
-
34548825669
-
Single sheet functionalized graphene by oxidation and thermal expansion of graphite
-
McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 2007;19:4396-404.
-
(2007)
Chem Mater
, vol.19
, pp. 4396-4404
-
-
McAllister, M.J.1
Li, J.L.2
Adamson, D.H.3
Schniepp, H.C.4
Abdala, A.A.5
Liu, J.6
-
47
-
-
80053294964
-
Steam etched porous graphene oxide network for chemical sensing
-
Han TH, Huang YK, Tan ATL, Dravid VP, Huang J. Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc 2011;133:15264-7.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 15264-15267
-
-
Han, T.H.1
Huang, Y.K.2
Tan, A.T.L.3
Dravid, V.P.4
Huang, J.5
-
48
-
-
80755172117
-
Supercapacitor performances of thermally reduced graphene oxide
-
Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, et al. Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 2012;198:423-7.
-
(2012)
J Power Sources
, vol.198
, pp. 423-427
-
-
Zhao, B.1
Liu, P.2
Jiang, Y.3
Pan, D.4
Tao, H.5
Song, J.6
-
49
-
-
78649991661
-
High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes
-
Chen Y, Zhang X, Zhang D, Yu P, Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011;49:573-80.
-
(2011)
Carbon
, vol.49
, pp. 573-580
-
-
Chen, Y.1
Zhang, X.2
Zhang, D.3
Yu, P.4
Ma, Y.5
-
50
-
-
84861630169
-
Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors
-
Chen CC, Zhang Q, Yang MG, Huang CS, Yang YG, Wang MZ. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 2012;50:3572-84.
-
(2012)
Carbon
, vol.50
, pp. 3572-3584
-
-
Chen, C.C.1
Zhang, Q.2
Yang, M.G.3
Huang, C.S.4
Yang, Y.G.5
Wang, M.Z.6
-
51
-
-
84861583377
-
The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets
-
Fan LZ, Liu JL, Din RU, Yan X, Qu X. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. Carbon 2012;50:3724-30.
-
(2012)
Carbon
, vol.50
, pp. 3724-3730
-
-
Fan, L.Z.1
Liu, J.L.2
Din, R.U.3
Yan, X.4
Qu, X.5
-
52
-
-
77953129397
-
Graphene nanosheets as electrode material for electric double-layer capacitors
-
Du X, Guo P, Song H, Chen X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim Acta 2010;55:4812-9.
-
(2010)
Electrochim Acta
, vol.55
, pp. 4812-4819
-
-
Du, X.1
Guo, P.2
Song, H.3
Chen, X.4
-
53
-
-
73249148467
-
Lowtemperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage
-
Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, et al. Lowtemperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 2009;3(11):3730-6.
-
(2009)
ACS Nano
, vol.3
, Issue.11
, pp. 3730-3736
-
-
Lv, W.1
Tang, D.M.2
He, Y.B.3
You, C.H.4
Shi, Z.Q.5
Chen, X.C.6
-
54
-
-
77949491921
-
Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors
-
Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010;48:2118-22.
-
(2010)
Carbon
, vol.48
, pp. 2118-2122
-
-
Zhu, Y.1
Murali, S.2
Stoller, M.D.3
Velamakanni, A.4
Piner, R.D.5
Ruoff, R.S.6
-
55
-
-
79958784559
-
Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes
-
Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 2011;11:2472-7.
-
(2011)
Nano Lett
, vol.11
, pp. 2472-2477
-
-
Jeong, H.M.1
Lee, J.W.2
Shin, W.H.3
Choi, Y.J.4
Shin, H.J.5
Kang, J.K.6
-
56
-
-
84875209808
-
Low-temperature preparation of nitrogen-doped grapheme for supercapacitors
-
Cao H, Zhou X, Qin Z, Liu Z. Low-temperature preparation of nitrogen-doped grapheme for supercapacitors. Carbon 2013;56:218-23.
-
(2013)
Carbon
, vol.56
, pp. 218-223
-
-
Cao, H.1
Zhou, X.2
Qin, Z.3
Liu, Z.4
-
57
-
-
84872851347
-
Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications
-
Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, et al. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 2013;7(1):19-26.
-
(2013)
ACS Nano
, vol.7
, Issue.1
, pp. 19-26
-
-
Han, J.1
Zhang, L.L.2
Lee, S.3
Oh, J.4
Lee, K.S.5
Potts, J.R.6
|