메뉴 건너뛰기




Volumn 4, Issue 3-4, 2011, Pages 435-442

Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach

Author keywords

Young s modulus; Artificial neural network; Back propagation; Poisson s ratio; Tensile strength; Uniaxial compressive strength

Indexed keywords


EID: 84922684610     PISSN: 18667511     EISSN: 18667538     Source Type: Journal    
DOI: 10.1007/s12517-009-0093-6     Document Type: Article
Times cited : (41)

References (18)
  • 2
    • 84928247631 scopus 로고    scopus 로고
    • Available via, Accessed 22 Apr 2008
    • Efunda (2008) Finding the Elastic Constants E and ν. Available via http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/elastic_constants_E_nu.cfm. Accessed 22 Apr 2008
    • (2008) Finding the Elastic Constants E and ν
  • 3
    • 1242264861 scopus 로고    scopus 로고
    • A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock
    • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17(1):61–72
    • (2004) Eng Appl Artif Intell , vol.17 , Issue.1 , pp. 61-72
    • Gokceoglu, C.1    Zorlu, K.2
  • 4
    • 0000514649 scopus 로고
    • Suggested methods for determining tensile strength of rock materials
    • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abst 15:101–103
    • (1978) Int J Rock Mech Min Sci Geomech Abst , vol.15 , pp. 101-103
  • 5
    • 0018681945 scopus 로고
    • Suggested methods for determining the uniaxial compressive strength and deformability of rock materials
    • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abst 16(2):135–140
    • (1979) Int J Rock Mech Min Sci Geomech Abst , vol.16 , Issue.2 , pp. 135-140
  • 7
    • 0001617074 scopus 로고
    • Failure of rocks under tensile strength
    • Jaeger JC (1967) Failure of rocks under tensile strength. Int J Rock Mech Min Sci 4:219–227
    • (1967) Int J Rock Mech Min Sci , vol.4 , pp. 219-227
    • Jaeger, J.C.1
  • 8
    • 12344311257 scopus 로고    scopus 로고
    • Predicting elastic properties of intact rocks from index tests using multiple regression modelling
    • Karakus M, Kumral M, Kilic O (2005) Predicting elastic properties of intact rocks from index tests using multiple regression modelling. Int J Rock Mech Min Sci 42(2):323–330
    • (2005) Int J Rock Mech Min Sci , vol.42 , Issue.2 , pp. 323-330
    • Karakus, M.1    Kumral, M.2    Kilic, O.3
  • 9
    • 0034353421 scopus 로고    scopus 로고
    • Evaluation of mechanical rock properties using a Schmidt Hammer
    • Katz O, Reches Z, Roegiers JC (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int J Rock Mech Min Sci 37 (4):723–728
    • (2000) Int J Rock Mech Min Sci , vol.37 , Issue.4 , pp. 723-728
    • Katz, O.1    Reches, Z.2    Roegiers, J.C.3
  • 11
    • 84928229139 scopus 로고    scopus 로고
    • Impact of geohazard on the construction of Nathpa Jhakri Hydel Project, NW Himalaya, Nat Symp. Role of earth science, integrated development and related societal issue
    • Kumar S, Kumar A (2001) Impact of geohazard on the construction of Nathpa Jhakri Hydel Project, NW Himalaya, Nat Symp. Role of earth science, integrated development and related societal issue. GSI Sp Pub 65(2):123–128
    • (2001) GSI Sp Pub , vol.65 , Issue.2 , pp. 123-128
    • Kumar, S.1    Kumar, A.2
  • 13
    • 46949088613 scopus 로고    scopus 로고
    • Prediction of elastic modulus of jointed rock mass using artificial neural networks
    • Maji VB, Sitharam TG (2008) Prediction of elastic modulus of jointed rock mass using artificial neural networks. Geotech Geol Eng 26:443–452
    • (2008) Geotech Geol Eng , vol.26 , pp. 443-452
    • Maji, V.B.1    Sitharam, T.G.2
  • 14
    • 0032997179 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of the unconfined compressive strength (UCS) from equotip hardness
    • Meulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from equotip hardness. Int J Rock Mech Min Sci 36:29–39
    • (1999) Int J Rock Mech Min Sci , vol.36 , pp. 29-39
    • Meulenkamp, F.1    Grima, M.A.2
  • 17
    • 0035251579 scopus 로고    scopus 로고
    • Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural network
    • Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural network. Int J Rock Mech Min Sci 38:269–284
    • (2001) Int J Rock Mech Min Sci , vol.38 , pp. 269-284
    • Singh, V.K.1    Singh, D.2    Singh, T.N.3
  • 18
    • 0032169593 scopus 로고    scopus 로고
    • The application of neural networks to rock engineering systems
    • Yang Y, Zhang Q (1998) The application of neural networks to rock engineering systems. Int J Rock Mech Min Sci 35(6):727–745
    • (1998) Int J Rock Mech Min Sci , vol.35 , Issue.6 , pp. 727-745
    • Yang, Y.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.