-
1
-
-
84891928133
-
When to expect violations of causal faithfulness and why it matters
-
Andersen, H. (2013). When to expect violations of causal faithfulness and why it matters. Philosophy of Science Supplement, 5, 672–683.
-
(2013)
Philosophy of Science Supplement
, vol.5
, pp. 672-683
-
-
Andersen, H.1
-
2
-
-
0039289571
-
What is wrong with Bayes nets?
-
Cartwright, N. (2001). What is wrong with Bayes nets? The Monist, 84, 242–264.
-
(2001)
The Monist
, vol.84
, pp. 242-264
-
-
Cartwright, N.1
-
4
-
-
0040016435
-
Independence, invariance and the causal Markov condition
-
Hausman, D., & Woodward, J. (1999). Independence, invariance and the causal Markov condition. British Journal for the Philosophy of Science, 50, 521–583.
-
(1999)
British Journal for the Philosophy of Science
, vol.50
, pp. 521-583
-
-
Hausman, D.1
Woodward, J.2
-
5
-
-
84964280601
-
Probabilistic causation. In E. Zalta (Ed.)
-
Hitchcock, C. (2010). Probabilistic causation. In E. Zalta (Ed.), Stanford encyclopedia of philosophy.http://plato.stanford.edu/entries/causation-probabilistic/.
-
(2010)
Stanford encyclopedia of philosophy
-
-
Hitchcock, C.1
-
7
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Hoyer, P., Janzing, D., Mooij, J., Peters, J., Scholkopf, B. (2008). Nonlinear causal discovery with additive noise models. In Advances in neural information processing systems 21 (NIPS 2008), pp. 689–696.
-
(2008)
In Advances in neural information processing systems
, vol.21
, Issue.NIPS 2008
, pp. 689-696
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Scholkopf, B.5
-
8
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch, M., & Bühlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8, 613–636.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
9
-
-
84964233464
-
High-dimensional learning of linear causal networks via inverse covariance estimation
-
Loh, P., & Bühlmann, P. (2013). High-dimensional learning of linear causal networks via inverse covariance estimation. arXiv:1311.3492v1 [stat.ML].
-
(2013)
arXiv:1311.3492v1 [stat.ML]
-
-
Loh, P.1
Bühlmann, P.2
-
12
-
-
80053158210
-
Causal inference on discrete data using additive noise models
-
Peters, J., Janzing, D., & Scholkopf, B. (2011). Causal inference on discrete data using additive noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2436–2450.
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.12
, pp. 2436-2450
-
-
Peters, J.1
Janzing, D.2
Scholkopf, B.3
-
13
-
-
80053209343
-
Adjacency-faithfulness and conservative causal inference
-
Ramsey, J., Spirtes, P., & Zhang, J. (2006). Adjacency-faithfulness and conservative causal inference. Proceedings of 22nd conference on uncertainty in artificial intelligence (UAI-06), pp. 401–408.
-
(2006)
Proceedings of 22nd conference on uncertainty in artificial intelligence (UAI-06)
, pp. 401-408
-
-
Ramsey, J.1
Spirtes, P.2
Zhang, J.3
-
14
-
-
84964205843
-
Learning directed acyclic graphs based on sparsest permutations
-
Raskutti, G., & Uhler, C. (2014). Learning directed acyclic graphs based on sparsest permutations. arXiv:1307.0366v3 [math.ST].
-
(2014)
arXiv:1307.0366v3 [math.ST]
-
-
Raskutti, G.1
Uhler, C.2
-
15
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P., Hyvärinen, A., & Kerminen, A. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003–2030.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.2
Hyvärinen, A.3
Kerminen, A.4
-
16
-
-
0003614273
-
-
MIT Press, Cambridge, MA
-
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge, MA: MIT Press.
-
(2000)
Causation, prediction, and search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
17
-
-
84921458343
-
A uniformly consistent estimator of causal effects under the k-triangle-faithfulness assumption
-
Spirtes, P., & Zhang, J. (2014). A uniformly consistent estimator of causal effects under the k-triangle-faithfulness assumption. Statistical Science, 29, 662–678.
-
(2014)
Statistical Science
, vol.29
, pp. 662-678
-
-
Spirtes, P.1
Zhang, J.2
-
18
-
-
33751196788
-
Homogeneity, selection, and the faithfulness condition
-
Steel, D. (2006). Homogeneity, selection, and the faithfulness condition. Minds and Machines, 16, 303–317.
-
(2006)
Minds and Machines
, vol.16
, pp. 303-317
-
-
Steel, D.1
-
19
-
-
0032369907
-
Causal independence and faithfulness
-
Woodward, J. (1998). Causal independence and faithfulness. Multivariate Behavioral Research, 33, 129–148.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 129-148
-
-
Woodward, J.1
-
20
-
-
44349095903
-
Detection of unfaithfulness and robust causal inference’
-
Zhang, J., & Spirtes, P. (2008). Detection of unfaithfulness and robust causal inference’. Minds and Machines, 18(2), 239–271.
-
(2008)
Minds and Machines
, vol.18
, Issue.2
, pp. 239-271
-
-
Zhang, J.1
Spirtes, P.2
-
21
-
-
84877770879
-
A comparison of three Occam’s Razors for Markovian causal models
-
Zhang, J. (2013). A comparison of three Occam’s Razors for Markovian causal models. British Journal for the Philosophy of Science, 64(2), 423–448.
-
(2013)
British Journal for the Philosophy of Science
, vol.64
, Issue.2
, pp. 423-448
-
-
Zhang, J.1
-
22
-
-
80053139998
-
Kernel-based conditional Independence test and application in causal discovery
-
Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2011). Kernel-based conditional Independence test and application in causal discovery. Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI-11), pp. 804–813.
-
(2011)
Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI-11)
, pp. 804-813
-
-
Zhang, K.1
Peters, J.2
Janzing, D.3
Schölkopf, B.4
|