메뉴 건너뛰기




Volumn 80, Issue , 2015, Pages 205-211

Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets

Author keywords

Carbon nanotube; Graphene; Lauric acid; Phase change material; Thermal conductivity

Indexed keywords

ASPECT RATIO; CARBON; CARBON NANOTUBES; CONDUCTIVE MATERIALS; DIFFERENTIAL SCANNING CALORIMETRY; GRAPHENE; HEAT STORAGE; INTERFACES (MATERIALS); METAL NANOPARTICLES; NANOCOMPOSITES; PHASE CHANGE MATERIALS; SATURATED FATTY ACIDS; YARN;

EID: 84922587043     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2015.01.056     Document Type: Article
Times cited : (219)

References (40)
  • 1
    • 78149413789 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of phase change materials for thermal energy storage: A review
    • L.W. Fan, and J.M. Khodadadi Thermal conductivity enhancement of phase change materials for thermal energy storage: a review Renew. Sust. Energ. Rev. 15 2011 24 46
    • (2011) Renew. Sust. Energ. Rev. , vol.15 , pp. 24-46
    • Fan, L.W.1    Khodadadi, J.M.2
  • 2
    • 84884908116 scopus 로고    scopus 로고
    • Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage
    • Y.M. Wang, B.T. Tang, and S.F. Zhang Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage Adv. Func. Mater. 23 2013 4354 4360
    • (2013) Adv. Func. Mater. , vol.23 , pp. 4354-4360
    • Wang, Y.M.1    Tang, B.T.2    Zhang, S.F.3
  • 3
    • 0038142372 scopus 로고    scopus 로고
    • PCM thermal control unit for portable electronic devices: Experimental and numerical studies
    • E.M. Alawadhi, and C.H. Amon PCM thermal control unit for portable electronic devices: experimental and numerical studies IEE Therm. Compon. Pack. Tech. 26 2003 116 125
    • (2003) IEE Therm. Compon. Pack. Tech. , vol.26 , pp. 116-125
    • Alawadhi, E.M.1    Amon, C.H.2
  • 4
    • 34250699990 scopus 로고    scopus 로고
    • Solar energy storage using phase change materials
    • M. Kenisarin, and K. Mahkamov Solar energy storage using phase change materials Renew. Sust. Energ. Rev. 11 2007 1913 1965
    • (2007) Renew. Sust. Energ. Rev. , vol.11 , pp. 1913-1965
    • Kenisarin, M.1    Mahkamov, K.2
  • 5
    • 57649200354 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change materials and applications
    • A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi Review on thermal energy storage with phase change materials and applications Renew. Sust. Energ. Rev. 13 2009 318 345
    • (2009) Renew. Sust. Energ. Rev. , vol.13 , pp. 318-345
    • Sharma, A.1    Tyagi, V.V.2    Chen, C.R.3    Buddhi, D.4
  • 7
    • 84876728595 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review
    • J.M. Khodadadi, L.W. Fan, and H. Babaei Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review Renew. Sust. Energ. Rev. 24 2013 418 444
    • (2013) Renew. Sust. Energ. Rev. , vol.24 , pp. 418-444
    • Khodadadi, J.M.1    Fan, L.W.2    Babaei, H.3
  • 8
    • 85028201930 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles
    • T. Oya, T. Nomura, M. Tsubota, N. Okinaka, and T. Akiyama Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles Appl. Therm. Engg 61 2013 825 828
    • (2013) Appl. Therm. Engg , vol.61 , pp. 825-828
    • Oya, T.1    Nomura, T.2    Tsubota, M.3    Okinaka, N.4    Akiyama, T.5
  • 9
    • 70349994677 scopus 로고    scopus 로고
    • Experimental study of thermal conductivity and phase change performance of nanofluids PCMs
    • Y.D. Liu, Y.G. Zhou, M.W. Tong, and X.S. Zhou Experimental study of thermal conductivity and phase change performance of nanofluids PCMs Microfluid. Nanofluid 7 2009 579 584
    • (2009) Microfluid. Nanofluid , vol.7 , pp. 579-584
    • Liu, Y.D.1    Zhou, Y.G.2    Tong, M.W.3    Zhou, X.S.4
  • 11
    • 64749112277 scopus 로고    scopus 로고
    • Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material
    • C.J. Ho, and J.Y. Gao Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material Int. Commun. Heat. Mass. Transf. 36 2009 467 470
    • (2009) Int. Commun. Heat. Mass. Transf. , vol.36 , pp. 467-470
    • Ho, C.J.1    Gao, J.Y.2
  • 13
    • 77954087951 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of Ag nanowires on an organic phase change material
    • J.L. Zeng, Z. Cao, D.W. Yang, L.X. Sun, and L. Zhang Thermal conductivity enhancement of Ag nanowires on an organic phase change material J. Therm. Anal. Calorim. 101 2010 385 389
    • (2010) J. Therm. Anal. Calorim. , vol.101 , pp. 385-389
    • Zeng, J.L.1    Cao, Z.2    Yang, D.W.3    Sun, L.X.4    Zhang, L.5
  • 14
    • 24944525809 scopus 로고    scopus 로고
    • Effect of carbon nanofiber additives on thermal behavior of phase change materials
    • A. Elgafy, and K. Lafdi Effect of carbon nanofiber additives on thermal behavior of phase change materials Carbon 43 2005 3067 3074
    • (2005) Carbon , vol.43 , pp. 3067-3074
    • Elgafy, A.1    Lafdi, K.2
  • 15
    • 73749085356 scopus 로고    scopus 로고
    • Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers
    • J.F. Wang, H.Q. Xie, Z. Xin, Y. Li, and L.F. Chen Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers Sol. Energ. 84 2010 339 344
    • (2010) Sol. Energ. , vol.84 , pp. 339-344
    • Wang, J.F.1    Xie, H.Q.2    Xin, Z.3    Li, Y.4    Chen, L.F.5
  • 16
    • 77956263233 scopus 로고    scopus 로고
    • Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes
    • J.F. Wang, H.Q. Xie, Z. Xin, Y. Li, and L.F. Chen Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes Carbon 48 2010 3979 3986
    • (2010) Carbon , vol.48 , pp. 3979-3986
    • Wang, J.F.1    Xie, H.Q.2    Xin, Z.3    Li, Y.4    Chen, L.F.5
  • 17
    • 79951852302 scopus 로고    scopus 로고
    • The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials
    • Y.B. Cui, C.H. Liu, S. Hu, and X. Yu The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials Sol. Energ. Mat. Sol. C 95 2011 1208 1212
    • (2011) Sol. Energ. Mat. Sol. C , vol.95 , pp. 1208-1212
    • Cui, Y.B.1    Liu, C.H.2    Hu, S.3    Yu, X.4
  • 18
    • 84880846237 scopus 로고    scopus 로고
    • Anomalous thermal conduction characteristics of phase change composites with single-walled carbon nanotube inclusions
    • S. Harish, K. Ishikawa, S. Chiashi, J. Shiomi, and S. Maruyama Anomalous thermal conduction characteristics of phase change composites with single-walled carbon nanotube inclusions J. Phys. Chem. C 117 2013 15409 15413
    • (2013) J. Phys. Chem. C , vol.117 , pp. 15409-15413
    • Harish, S.1    Ishikawa, K.2    Chiashi, S.3    Shiomi, J.4    Maruyama, S.5
  • 20
    • 55949105201 scopus 로고    scopus 로고
    • High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets
    • S. Kim, and L.T. Drzal High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets Sol. Energ. Mat. Sol. C 93 2009 136 142
    • (2009) Sol. Energ. Mat. Sol. C , vol.93 , pp. 136-142
    • Kim, S.1    Drzal, L.T.2
  • 21
    • 79955484375 scopus 로고    scopus 로고
    • Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material
    • J.L. Xiang, and L.T. Drzal Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material Sol. Energ. Mat. Sol. C 95 2011 1811 1818
    • (2011) Sol. Energ. Mat. Sol. C , vol.95 , pp. 1811-1818
    • Xiang, J.L.1    Drzal, L.T.2
  • 22
    • 84877800687 scopus 로고    scopus 로고
    • Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials
    • L.W. Fan, X. Fang, X. Wang, Y. Zeng, Y.Q. Xiao, Z.T. Yu, X. Xu, Y.C. Hu, and K.F. Cen Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials Appl. Energ. 110 2013 163 172
    • (2013) Appl. Energ. , vol.110 , pp. 163-172
    • Fan, L.W.1    Fang, X.2    Wang, X.3    Zeng, Y.4    Xiao, Y.Q.5    Yu, Z.T.6    Xu, X.7    Hu, Y.C.8    Cen, K.F.9
  • 23
    • 84880562325 scopus 로고    scopus 로고
    • Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets
    • X. Fang, L.W. Fan, Q. Ding, X. Wang, X.L. Yao, J.F. Hou, Z.T. Yu, G.H. Cheng, Y.C. Hu, and K.F. Cen Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets Energ. Fuel 27 2013 4041 4047
    • (2013) Energ. Fuel , vol.27 , pp. 4041-4047
    • Fang, X.1    Fan, L.W.2    Ding, Q.3    Wang, X.4    Yao, X.L.5    Hou, J.F.6    Yu, Z.T.7    Cheng, G.H.8    Hu, Y.C.9    Cen, K.F.10
  • 25
    • 0019728789 scopus 로고
    • Absolute measurement of the thermal-conductivity of electrically conducting liquids by the transient hot-wire method
    • Y. Nagasaka, and A. Nagashima Absolute measurement of the thermal-conductivity of electrically conducting liquids by the transient hot-wire method J. Phys. E Sci. Instrum. 14 1981 1435 1440
    • (1981) J. Phys. e Sci. Instrum. , vol.14 , pp. 1435-1440
    • Nagasaka, Y.1    Nagashima, A.2
  • 29
    • 0025419889 scopus 로고
    • Thermal conductivity of poly (ethylene glycols) and their binary mixtures
    • R. Di Guilio, and A.S. Teja Thermal conductivity of poly (ethylene glycols) and their binary mixtures J. Chem. Eng. Data 35 2 1990 117 121
    • (1990) J. Chem. Eng. Data , vol.35 , Issue.2 , pp. 117-121
    • Di Guilio, R.1    Teja, A.S.2
  • 30
  • 31
    • 80052131491 scopus 로고    scopus 로고
    • Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: A molecular dynamics simulation study
    • J.S. Yang, C.L. Yang, M.S. Wang, B.D. Chen, and X.G. Ma Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study Phys. Chem. Chem. Phys. 13 2011 15476 15482
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 15476-15482
    • Yang, J.S.1    Yang, C.L.2    Wang, M.S.3    Chen, B.D.4    Ma, X.G.5
  • 32
    • 84870671094 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene
    • H. Babaei, P. Keblinski, and J.M. Khodadadi Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene Int. J. Heat. Mass Transf. 58 2013 209 216
    • (2013) Int. J. Heat. Mass Transf. , vol.58 , pp. 209-216
    • Babaei, H.1    Keblinski, P.2    Khodadadi, J.M.3
  • 33
    • 31544472632 scopus 로고    scopus 로고
    • Freezing as a path to build complex composites
    • S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia Freezing as a path to build complex composites Science 311 5760 2006 515 518
    • (2006) Science , vol.311 , Issue.5760 , pp. 515-518
    • Deville, S.1    Saiz, E.2    Nalla, R.K.3    Tomsia, A.P.4
  • 34
    • 79955052558 scopus 로고    scopus 로고
    • Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions
    • R.T. Zheng, J.W. Gao, J.J. Wang, and G. Chen Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions Nat. Commun. 2 289 2011 1 6
    • (2011) Nat. Commun. , vol.2 , Issue.289 , pp. 1-6
    • Zheng, R.T.1    Gao, J.W.2    Wang, J.J.3    Chen, G.4
  • 35
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter Effective thermal conductivity of particulate composites with interfacial thermal resistance J. Appl. Phys. 81 1997 6692 6699
    • (1997) J. Appl. Phys. , vol.81 , pp. 6692-6699
    • Nan, C.W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 36
    • 79960644631 scopus 로고    scopus 로고
    • Thermal properties of graphene and nanostructured carbon materials
    • A.A. Balandin Thermal properties of graphene and nanostructured carbon materials Nat. Mater. 10 2011 569 581
    • (2011) Nat. Mater. , vol.10 , pp. 569-581
    • Balandin, A.A.1
  • 38
    • 3142611693 scopus 로고    scopus 로고
    • Role of thermal boundary resistance on the heat flow in carbon-nanotube composites
    • S. Shenogin, L.P. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill Role of thermal boundary resistance on the heat flow in carbon-nanotube composites J. Appl. Phys. 95 2004 8136 8144
    • (2004) J. Appl. Phys. , vol.95 , pp. 8136-8144
    • Shenogin, S.1    Xue, L.P.2    Ozisik, R.3    Keblinski, P.4    Cahill, D.G.5
  • 39
    • 70350431285 scopus 로고    scopus 로고
    • Thermal boundary resistance at the graphene-oil interface
    • 163105-1 - 163105-3
    • D. Konatham, and A. Striolo Thermal boundary resistance at the graphene-oil interface Appl. Phys. Lett. 95 2009 163105-1 - 163105-3
    • (2009) Appl. Phys. Lett. , vol.95
    • Konatham, D.1    Striolo, A.2
  • 40
    • 84907535063 scopus 로고    scopus 로고
    • Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energ storage
    • M. Mehrali, S.T. Latibari, M. Mehrali, T.M.I. Mahila, and H.S.C. Metselaar Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energ storage Energy Convers. Manag. 88 2014 206 213
    • (2014) Energy Convers. Manag. , vol.88 , pp. 206-213
    • Mehrali, M.1    Latibari, S.T.2    Mehrali, M.3    Mahila, T.M.I.4    Metselaar, H.S.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.