-
1
-
-
79955052558
-
Reversible Temperature Regulation of Electrical and Thermal Conductivity Using Liquid-Solid Phase Transitions
-
Zheng, R.; Gao, J.; Wang, J.; Chen, G. Reversible Temperature Regulation of Electrical and Thermal Conductivity Using Liquid-Solid Phase Transitions Nat. Commun. 2011, 2 (289) 1-4
-
(2011)
Nat. Commun.
, vol.2
, Issue.289
, pp. 1-4
-
-
Zheng, R.1
Gao, J.2
Wang, J.3
Chen, G.4
-
2
-
-
0001435905
-
Anomolously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles
-
Eastman, J. A.; Choi, S. U. S.; Yu, W.; Thompson, L. J. Anomolously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles Appl. Phys. Lett. 2001, 79, 718-720
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Yu, W.3
Thompson, L.J.4
-
3
-
-
79955470553
-
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
-
Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review Prog. Polym. Sci. 2011, 36, 914-944
-
(2011)
Prog. Polym. Sci.
, vol.36
, pp. 914-944
-
-
Han, Z.1
Fina, A.2
-
4
-
-
84884908116
-
Single-Walled Carbon Nanotube/ Phase Change Material Composites: Sunlight-Driven, Reversible, Form-Stable Phase Transitions for Solar Thermal Energy Storage
-
10.1002/adfm.201203728
-
Wang, Y.; Tang, B.; Zhang, S. Single-Walled Carbon Nanotube/ Phase Change Material Composites: Sunlight-Driven, Reversible, Form-Stable Phase Transitions for Solar Thermal Energy Storage Adv. Funct. Mater. 2013, 10.1002/adfm. 201203728
-
(2013)
Adv. Funct. Mater.
-
-
Wang, Y.1
Tang, B.2
Zhang, S.3
-
5
-
-
0037054733
-
Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol
-
Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol Chem. Phys. Lett. 2002, 360, 229-234
-
(2002)
Chem. Phys. Lett.
, vol.360
, pp. 229-234
-
-
Maruyama, S.1
Kojima, R.2
Miyauchi, Y.3
Chiashi, S.4
Kohno, M.5
-
6
-
-
84859936927
-
Enhanced Thermal Conductivity of Ethylene Glycol with Single-Walled Carbon Nanotube Inclusions
-
Harish, S.; Ishikawa, K.; Einarsson, E.; Aikawa, S.; Chiashi, S.; Shiomi, J.; Maruyama, S. Enhanced Thermal Conductivity of Ethylene Glycol with Single-Walled Carbon Nanotube Inclusions Int. J. Heat Mass Transfer 2012, 55, 3885-3890
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 3885-3890
-
-
Harish, S.1
Ishikawa, K.2
Einarsson, E.3
Aikawa, S.4
Chiashi, S.5
Shiomi, J.6
Maruyama, S.7
-
7
-
-
84871582203
-
Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion
-
Harish, S.; Ishikawa, K.; Einarsson, E.; Aikawa, S.; Inoue, T.; Zhao, P.; Watanabe, M.; Chiashi, S.; Shiomi, J.; Maruyama, S. Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion Mater. Express 2012, 2, 213-223
-
(2012)
Mater. Express
, vol.2
, pp. 213-223
-
-
Harish, S.1
Ishikawa, K.2
Einarsson, E.3
Aikawa, S.4
Inoue, T.5
Zhao, P.6
Watanabe, M.7
Chiashi, S.8
Shiomi, J.9
Maruyama, S.10
-
8
-
-
0019728789
-
Absolute Measurement of the Thermal-Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
-
Nagasaka, Y.; Nagashima, A. Absolute Measurement of the Thermal-Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method J. Phys. E: Sci. Instrum. 1981, 14, 1435-1440
-
(1981)
J. Phys. E: Sci. Instrum.
, vol.14
, pp. 1435-1440
-
-
Nagasaka, Y.1
Nagashima, A.2
-
9
-
-
70349607220
-
A Benchmark Study on the Thermal Conductivity of Nanofluids
-
Buongiorno, J.; Venerus, D. C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y. V.; Keblinski, P.; Hu, L.-w.; Alvarado, J. L.; Bang, I. C.; Bishnoi, S. W.; Bonetti, M.; Botz, F.; Cecere, A.; Chang, Y.; Chen, G.; Chen, H.; Chung, S. J.; Chyu, M. K.; Das, S. K.; Di Paola, R.; Ding, Y.; Dubois, F.; Dzido, G.; Eapen, J.; Escher, W.; Funfschilling, D.; Galand, Q.; Gao, J.; Gharagozloo, P. E.; Goodson, K. E.; Gutierrez, J. G.; Hong, H.; Horton, M.; Hwang, K. S.; Iorio, C. S.; Jang, S. P.; Jarzebski, A. B.; Jiang, Y.; Jin, L.; Kabelac, S.; Kamath, A.; Kedzierski, M. A.; Kieng, L. G.; Kim, C.; Kim, J.-H.; Kim, S.; Lee, S. H.; Leong, K. C.; Manna, I.; Michel, B.; Ni, R.; Patel, H. E.; Philip, J.; Poulikakos, D.; Reynaud, C.; Savino, R.; Singh, P. K.; Song, P.; Sundararajan, T.; Timofeeva, E.; Tritcak, T.; Turanov, A. N.; Van Vaerenbergh, S.; Wen, D.; Witharana, S.; Yang, C.; Yeh, W.-H.; Zhao, X.-Z.; Zhou, S.-Q. A Benchmark Study on the Thermal Conductivity of Nanofluids J. Appl. Phys. 2009, 106, 094312-1-14
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
Mckrell, T.4
Townsend, J.5
Christianson, R.6
Tolmachev, Y.V.7
Keblinski, P.8
Hu, L.-w.9
Alvarado, J.L.10
Bang, I.C.11
Bishnoi, S.W.12
Bonetti, M.13
Botz, F.14
Cecere, A.15
Chang, Y.16
Chen, G.17
Chen, H.18
Chung, S.J.19
Chyu, M.K.20
Das, S.K.21
Di Paola, R.22
Ding, Y.23
Dubois, F.24
Dzido, G.25
Eapen, J.26
Escher, W.27
Funfschilling, D.28
Galand, Q.29
Gao, J.30
Gharagozloo, P.E.31
Goodson, K.E.32
Gutierrez, J.G.33
Hong, H.34
Horton, M.35
Hwang, K.S.36
Iorio, C.S.37
Jang, S.P.38
Jarzebski, A.B.39
Jiang, Y.40
Jin, L.41
Kabelac, S.42
Kamath, A.43
Kedzierski, M.A.44
Kieng, L.G.45
Kim, C.46
Kim, J.-H.47
Kim, S.48
Lee, S.H.49
Leong, K.C.50
Manna, I.51
Michel, B.52
Ni, R.53
Patel, H.E.54
Philip, J.55
Poulikakos, D.56
Reynaud, C.57
Savino, R.58
Singh, P.K.59
Song, P.60
Sundararajan, T.61
Timofeeva, E.62
Tritcak, T.63
Turanov, A.N.64
Van Vaerenbergh, S.65
Wen, D.66
Witharana, S.67
Yang, C.68
Yeh, W.-H.69
Zhao, X.-Z.70
Zhou, S.-Q.71
more..
-
10
-
-
84876728595
-
Thermal Conductivity Enhancement of Nanostructured-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
-
Khodadadi, J. M.; Fan, L.; Babaei, H. Thermal Conductivity Enhancement of Nanostructured-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review Renewable Sustainable Energy Rev. 2013, 24, 418-444
-
(2013)
Renewable Sustainable Energy Rev.
, vol.24
, pp. 418-444
-
-
Khodadadi, J.M.1
Fan, L.2
Babaei, H.3
-
11
-
-
0345557811
-
Correspondence. Measurement of Thermal Conductivity of n-Octadecane
-
Powell, R. W.; Challoner, A. R.; Seyer, W. F. Correspondence. Measurement of Thermal Conductivity of n-Octadecane Ind. Eng. Chem. Res. 1961, 53, 581-582
-
(1961)
Ind. Eng. Chem. Res.
, vol.53
, pp. 581-582
-
-
Powell, R.W.1
Challoner, A.R.2
Seyer, W.F.3
-
12
-
-
70349994677
-
Experimental Study of Thermal Conductivity and Phase Change Performance of Nanofluids PCMs
-
Liu, Y. D.; Zhou, Y. G.; Tong, M. W.; Zhou, X. S. Experimental Study of Thermal Conductivity and Phase Change Performance of Nanofluids PCMs Microfluid. Nanofluid. 2009, 7, 579-584
-
(2009)
Microfluid. Nanofluid.
, vol.7
, pp. 579-584
-
-
Liu, Y.D.1
Zhou, Y.G.2
Tong, M.W.3
Zhou, X.S.4
-
13
-
-
79955562111
-
Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite Due to Low Concentration Graphene Additives
-
Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N. Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite Due to Low Concentration Graphene Additives J. Phys. Chem. C 2011, 115, 8753-8758
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 8753-8758
-
-
Yavari, F.1
Fard, H.R.2
Pashayi, K.3
Rafiee, M.A.4
Zamiri, A.5
Yu, Z.6
Ozisik, R.7
Borca-Tasciuc, T.8
Koratkar, N.9
-
14
-
-
33846639140
-
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
-
Sari, A.; Karaipekli, A. Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material Appl. Therm. Eng. 2007, 27, 1271-1277
-
(2007)
Appl. Therm. Eng.
, vol.27
, pp. 1271-1277
-
-
Sari, A.1
Karaipekli, A.2
-
15
-
-
77953143693
-
Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
-
Volkov, A. N.; Zhigilei, L. V. Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials Phys. Rev. Lett. 2010, 104, 215902-1-4
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 215902
-
-
Volkov, A.N.1
Zhigilei, L.V.2
-
16
-
-
35148845982
-
Structural Phase Transition of Alkane Molecules in Nanotube Composites
-
Wei, C. Y. Structural Phase Transition of Alkane Molecules in Nanotube Composites Phys. Rev. B 2007, 76, 134104-1-10
-
(2007)
Phys. Rev. B
, vol.76
, pp. 134104
-
-
Wei, C.Y.1
-
17
-
-
80052131491
-
Crystallization of Alkane Melts Induced by Carbon Nanotubes and Graphene Nanosheets: A Molecular Dynamics Simulation Study
-
Yang, J. S.; Yang, C. L.; Wang, M. S.; Chen, B. D.; Ma, X. G. Crystallization of Alkane Melts Induced by Carbon Nanotubes and Graphene Nanosheets: A Molecular Dynamics Simulation Study Phys. Chem. Chem. Phys. 2011, 13, 15476-15482
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 15476-15482
-
-
Yang, J.S.1
Yang, C.L.2
Wang, M.S.3
Chen, B.D.4
Ma, X.G.5
-
18
-
-
84870671094
-
Thermal Conductivity Enhancement of Paraffins by Increasing the Alignment of Molecules Through Adding CNT/Graphene
-
Babaei, H.; Keblinski, P.; Khodadadi, J. M. Thermal Conductivity Enhancement of Paraffins by Increasing the Alignment of Molecules Through Adding CNT/Graphene Int. J. Heat Mass Transf. 2012, 58, 209-216
-
(2012)
Int. J. Heat Mass Transf.
, vol.58
, pp. 209-216
-
-
Babaei, H.1
Keblinski, P.2
Khodadadi, J.M.3
-
19
-
-
77953164348
-
Isothermal Crystallization of Poly(L-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study
-
Xu, J. Z.; Chen, T.; Yang, C. L.; Li, Z. M.; Mao, Y. M.; Zeng, B. Q.; Hsiao, B. S. Isothermal Crystallization of Poly(L-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study Macromolecules 2010, 43, 5000-5008
-
(2010)
Macromolecules
, vol.43
, pp. 5000-5008
-
-
Xu, J.Z.1
Chen, T.2
Yang, C.L.3
Li, Z.M.4
Mao, Y.M.5
Zeng, B.Q.6
Hsiao, B.S.7
-
20
-
-
0031143265
-
Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance
-
Nan, C.-W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance J. Appl. Phys. 1997, 81, 6692-6699
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 6692-6699
-
-
Nan, C.-W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
21
-
-
33749063542
-
Effective Thermal-Conductivity of Dispersed Materials
-
Yamada, E.; Ota, T. Effective Thermal-Conductivity of Dispersed Materials Heat Mass Transf. 1980, 13, 27-37
-
(1980)
Heat Mass Transf.
, vol.13
, pp. 27-37
-
-
Yamada, E.1
Ota, T.2
-
22
-
-
34547817093
-
Modified Model for Effective Thermal Conductivity of Nanofluids Containing Carbon Nanotubes
-
Zheng, Y. Z.; Hong, H. P. Modified Model for Effective Thermal Conductivity of Nanofluids Containing Carbon Nanotubes J. Thermophys. Heat Transf. 2007, 21, 658-660
-
(2007)
J. Thermophys. Heat Transf.
, vol.21
, pp. 658-660
-
-
Zheng, Y.Z.1
Hong, H.P.2
-
23
-
-
0041751651
-
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
-
Maruyama, S. A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube Microscale Thermophys. Eng. 2003, 7, 41-50
-
(2003)
Microscale Thermophys. Eng.
, vol.7
, pp. 41-50
-
-
Maruyama, S.1
-
24
-
-
0242499391
-
Interfacial Heat Flow in Carbon Nanotube Suspensions
-
Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L. P.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M.; Keblinski, P. Interfacial Heat Flow in Carbon Nanotube Suspensions Nat. Mater. 2003, 2, 731-734
-
(2003)
Nat. Mater.
, vol.2
, pp. 731-734
-
-
Huxtable, S.T.1
Cahill, D.G.2
Shenogin, S.3
Xue, L.P.4
Ozisik, R.5
Barone, P.6
Usrey, M.7
Strano, M.S.8
Siddons, G.9
Shim, M.10
Keblinski, P.11
-
25
-
-
84864705699
-
Interfacial Thermal Conductance Observed To Be Higher in Semiconducting than Metallic Carbon Nanotubes
-
Kang, S. D.; Lim, S. C.; Lee, E. S.; Cho, Y. W.; Kim, Y. H.; Lyeo, H. Ki.; Lee, Y. H. Interfacial Thermal Conductance Observed To Be Higher in Semiconducting than Metallic Carbon Nanotubes ACS Nano 2012, 6, 3853-3860
-
(2012)
ACS Nano
, vol.6
, pp. 3853-3860
-
-
Kang, S.D.1
Lim, S.C.2
Lee, E.S.3
Cho, Y.W.4
Kim, Y.H.5
Lyeo, H.Ki.6
Lee, Y.H.7
-
26
-
-
3142611693
-
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
-
Shenogin, S.; Xue, L. P.; Ozisik, R.; Keblinski, P.; Cahill, D. G. Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites J. Appl. Phys. 2004, 95, 8136-8144
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 8136-8144
-
-
Shenogin, S.1
Xue, L.P.2
Ozisik, R.3
Keblinski, P.4
Cahill, D.G.5
|