메뉴 건너뛰기




Volumn 118, Issue 2, 2015, Pages 218-233

PSHREG: A SAS macro for proportional and nonproportional subdistribution hazards regression

Author keywords

Competing risks; Cumulative incidence; Regression analysis; SAS software; Subdistribution hazard ratio; Survival analysis

Indexed keywords

HAZARDS; MAXIMUM LIKELIHOOD ESTIMATION; REGRESSION ANALYSIS; RISK ASSESSMENT;

EID: 84922476780     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2014.11.009     Document Type: Article
Times cited : (110)

References (25)
  • 1
    • 84861836657 scopus 로고    scopus 로고
    • Practical methods for competing risk data: a review
    • Bakoyannis G., Touloumi G. Practical methods for competing risk data: a review. Stat. Methods Med. Res. 2012, 21:257-272. 10.1177/0962280210394479.
    • (2012) Stat. Methods Med. Res. , vol.21 , pp. 257-272
    • Bakoyannis, G.1    Touloumi, G.2
  • 3
    • 1442359831 scopus 로고    scopus 로고
    • SAS macros for estimation of the cumulative incidence functions based on a cox regression model for competing risks survival data
    • Rosthoj S., Andersen P.K., Abildstrom S. SAS macros for estimation of the cumulative incidence functions based on a cox regression model for competing risks survival data. Comput. Methods Progr. Biomed. 2004, 74:69-75. 10.1016/S0169-2607(03)00069-5.
    • (2004) Comput. Methods Progr. Biomed. , vol.74 , pp. 69-75
    • Rosthoj, S.1    Andersen, P.K.2    Abildstrom, S.3
  • 4
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine J., Gray R. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94:496-509. 10.1080/01621459.1999.10474144.
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 496-509
    • Fine, J.1    Gray, R.2
  • 6
    • 84864498786 scopus 로고    scopus 로고
    • Competing risks in epidemiology: possibilities and pitfalls
    • Andersen P.K., Geskus R., de Witte T., Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int. J. Epidemiol. 2012, 41:861-870. 10.1093/ije/dyr213.
    • (2012) Int. J. Epidemiol. , vol.41 , pp. 861-870
    • Andersen, P.K.1    Geskus, R.2    de Witte, T.3    Putter, H.4
  • 9
    • 58149333667 scopus 로고    scopus 로고
    • A SAS-macro for estimation of the cumulative incidence using Poisson regression
    • Waltoft B.L. A SAS-macro for estimation of the cumulative incidence using Poisson regression. Comput. Methods Progr. Biomed. 2009, 93:140-147. 10.1016/j.cmpb.2008.08.004.
    • (2009) Comput. Methods Progr. Biomed. , vol.93 , pp. 140-147
    • Waltoft, B.L.1
  • 10
    • 78650622845 scopus 로고    scopus 로고
    • SAS macros for estimation of direct adjusted cumulative incidence curves under proportional subdistribution hazards models
    • Zhang X., Zhang M.-J. SAS macros for estimation of direct adjusted cumulative incidence curves under proportional subdistribution hazards models. Comput. Methods Progr. Biomed. 2011, 101:87-93. 10.1016/j.cmpb.2010.07.005.
    • (2011) Comput. Methods Progr. Biomed. , vol.101 , pp. 87-93
    • Zhang, X.1    Zhang, M.-J.2
  • 11
    • 78650235570 scopus 로고    scopus 로고
    • Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring
    • Geskus R. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring. Biometrics 2011, 67:39-49. 10.1111/j.1541-0420.2010.01420.x.
    • (2011) Biometrics , vol.67 , pp. 39-49
    • Geskus, R.1
  • 12
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80:27-38. 10.1093/biomet/80.1.27.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 13
    • 0035099124 scopus 로고    scopus 로고
    • A solution to the problem of monotone likelihood in Cox regression
    • Heinze G., Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001, 57:114-119. 10.1111/j.0006-341X.2001.00114.x.
    • (2001) Biometrics , vol.57 , pp. 114-119
    • Heinze, G.1    Schemper, M.2
  • 14
    • 63249086305 scopus 로고    scopus 로고
    • Avoiding infinite estimates of time-dependent effects in small-sample survival studies
    • Heinze G., Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Stat. Med. 2008, 27:6455-6469. 10.1002/sim.3418.
    • (2008) Stat. Med. , vol.27 , pp. 6455-6469
    • Heinze, G.1    Dunkler, D.2
  • 15
    • 84899878900 scopus 로고    scopus 로고
    • Urine osmolarity and risk of dialysis initiation in a chronic kidney disease cohort: a possible titration target?
    • Plischke M., Kohl M., Shayganfar S., Handisurya A., Heinze G., et al. Urine osmolarity and risk of dialysis initiation in a chronic kidney disease cohort: a possible titration target?. PLoS ONE 2012, 9(3.). 10.1371/journal.pone.0093226.
    • (2012) PLoS ONE , vol.9 , Issue.3
    • Plischke, M.1    Kohl, M.2    Shayganfar, S.3    Handisurya, A.4    Heinze, G.5
  • 16
    • 84892372742 scopus 로고
    • The robust inference for the Cox proportional hazards model
    • Lin D., Wei L. The robust inference for the Cox proportional hazards model. J. Am. Stat. Assoc. 1989, 84:1074-1078. 10.1080/01621459.1989.10478874.
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 1074-1078
    • Lin, D.1    Wei, L.2
  • 19
    • 38849176100 scopus 로고    scopus 로고
    • Selection of important variables and determination of functional form for continuous predictors in multivariable model building
    • Sauerbrei W., Royston P., Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat. Med. 2007, 26:5512-5528. 10.1002/sim.3148.
    • (2007) Stat. Med. , vol.26 , pp. 5512-5528
    • Sauerbrei, W.1    Royston, P.2    Binder, H.3
  • 20
    • 84878248081 scopus 로고    scopus 로고
    • Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events
    • Lin I., Chang W., Liao Y. Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events. J. Clin. Epidemiol. 2013, 66:743-751. 10.1016/j.jclinepi.2013.02.002.
    • (2013) J. Clin. Epidemiol. , vol.66 , pp. 743-751
    • Lin, I.1    Chang, W.2    Liao, Y.3
  • 21
    • 0024596532 scopus 로고
    • Flexible regression models with cubic splines
    • Durrleman S., Simon R. Flexible regression models with cubic splines. Statist. Med. 1989, 8:551-561. 10.1002/sim.4780080504.
    • (1989) Statist. Med. , vol.8 , pp. 551-561
    • Durrleman, S.1    Simon, R.2
  • 23
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling
    • Royston P., Altman D. Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Appl. Stat. 1994, 43:429-467.
    • (1994) Appl. Stat. , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.2
  • 24
    • 58149387571 scopus 로고    scopus 로고
    • Methods for stratification of person-time and events: a prerequisite for Poisson regression and SIR estimation
    • Rostgaard K. Methods for stratification of person-time and events: a prerequisite for Poisson regression and SIR estimation. Epidemiol. Perspect. Innov. 2008, 5. 10.1186/1742-5573-5-7.
    • (2008) Epidemiol. Perspect. Innov. , vol.5
    • Rostgaard, K.1
  • 25
    • 52449124196 scopus 로고    scopus 로고
    • Time-dependent covariates in the proportional subdistribution hazards model for competing risks
    • Beyersmann J., Schumacher M. Time-dependent covariates in the proportional subdistribution hazards model for competing risks. Biostatistics 2008, 9:765-776. 10.1093/biostatistics/kxn009.
    • (2008) Biostatistics , vol.9 , pp. 765-776
    • Beyersmann, J.1    Schumacher, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.