-
2
-
-
75649121098
-
Honeycomb carbon: A review of graphene
-
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev 2009;110(1):132-45.
-
(2009)
Chem Rev
, vol.110
, Issue.1
, pp. 132-145
-
-
Allen, M.J.1
Tung, V.C.2
Kaner, R.B.3
-
3
-
-
79953657081
-
Graphene based new energy materials
-
Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci 2011;4(4):1113-32.
-
(2011)
Energy Environ Sci
, vol.4
, Issue.4
, pp. 1113-1132
-
-
Sun, Y.1
Wu, Q.2
Shi, G.3
-
4
-
-
79960237024
-
Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability
-
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 2011;11(7):2644-7.
-
(2011)
Nano Lett
, vol.11
, Issue.7
, pp. 2644-2647
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
Robinson, J.T.4
Li, Y.5
Jackson, A.6
-
5
-
-
78649614247
-
Synthesis of nitrogen-doped graphene films for lithium battery application
-
Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010;4(11):6337-42.
-
(2010)
ACS Nano
, vol.4
, Issue.11
, pp. 6337-6342
-
-
Reddy, A.L.M.1
Srivastava, A.2
Gowda, S.R.3
Gullapalli, H.4
Dubey, M.5
Ajayan, P.M.6
-
6
-
-
79955386177
-
Li-air rechargeable battery based on metalfree graphene nanosheet catalysts
-
Yoo E, Zhou H. Li-air rechargeable battery based on metalfree graphene nanosheet catalysts. ACS Nano 2011;5(4):3020-6.
-
(2011)
ACS Nano
, vol.5
, Issue.4
, pp. 3020-3026
-
-
Yoo, E.1
Zhou, H.2
-
7
-
-
77949356255
-
Silicon nanoparticles-graphene paper composites for Li ion battery anodes
-
Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun 2010;46(12):2025-7.
-
(2010)
Chem Commun
, vol.46
, Issue.12
, pp. 2025-2027
-
-
Lee, J.K.1
Smith, K.B.2
Hayner, C.M.3
Kung, H.H.4
-
8
-
-
46449100294
-
Graphene-based materials
-
Li D, Kaner RB. Graphene-based materials. Science 2008;320(5880):1170-1.
-
(2008)
Science
, vol.320
, Issue.5880
, pp. 1170-1171
-
-
Li, D.1
Kaner, R.B.2
-
9
-
-
57049185903
-
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
-
Yoo E, Kim J, Hosono E, Zhou H-s, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 2008;8(8):2277-82.
-
(2008)
Nano Lett
, vol.8
, Issue.8
, pp. 2277-2282
-
-
Yoo, E.1
Kim, J.2
Hosono, E.3
Zhou, H.-S.4
Kudo, T.5
Honma, I.6
-
10
-
-
67651149845
-
Li storage properties of disordered graphene nanosheets
-
Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, et al. Li storage properties of disordered graphene nanosheets. Chem Mater 2009;21(14):3136-42.
-
(2009)
Chem Mater
, vol.21
, Issue.14
, pp. 3136-3142
-
-
Pan, D.1
Wang, S.2
Zhao, B.3
Wu, M.4
Zhang, H.5
Wang, Y.6
-
11
-
-
77954942930
-
Nonannealed graphene paper as a binder-free anode for lithiumion batteries
-
Abouimrane A, Compton OC, Amine K, Nguyen ST. Nonannealed graphene paper as a binder-free anode for lithiumion batteries. J Phys Chem C 2010;114(29):12800-4.
-
(2010)
J Phys Chem C
, vol.114
, Issue.29
, pp. 12800-12804
-
-
Abouimrane, A.1
Compton, O.C.2
Amine, K.3
Nguyen, S.T.4
-
12
-
-
56149113622
-
Graphene-based ultracapacitors
-
Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett 2008;8(10):3498-502.
-
(2008)
Nano Lett
, vol.8
, Issue.10
, pp. 3498-3502
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
13
-
-
77957327730
-
Graphene double-layer capacitor with ac line-filtering performance
-
Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science 2010;329(5999):1637-9.
-
(2010)
Science
, vol.329
, Issue.5999
, pp. 1637-1639
-
-
Miller, J.R.1
Outlaw, R.A.2
Holloway, B.C.3
-
14
-
-
79954538715
-
Ultrathin planar graphene supercapacitors
-
Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, et al. Ultrathin planar graphene supercapacitors. Nano Lett 2011;11(4):1423-7.
-
(2011)
Nano Lett
, vol.11
, Issue.4
, pp. 1423-1427
-
-
Yoo, J.J.1
Balakrishnan, K.2
Huang, J.3
Meunier, V.4
Sumpter, B.G.5
Srivastava, A.6
-
15
-
-
57049174440
-
Exfoliated graphene separated by platinum nanoparticles
-
Si Y, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater 2008;20(21):6792-7.
-
(2008)
Chem Mater
, vol.20
, Issue.21
, pp. 6792-6797
-
-
Si, Y.1
Samulski, E.T.2
-
16
-
-
77955875714
-
Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
-
Wu Z-S, RenW, Wen L, Gao L, Zhao J, Chen Z, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010;4(6):3187-94.
-
(2010)
ACS Nano
, vol.4
, Issue.6
, pp. 3187-3194
-
-
Wu, Z.-S.1
Renw Wen, L.2
Gao, L.3
Zhao, J.4
Chen, Z.5
-
17
-
-
77957714684
-
Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 2010;132(40):13978-80.
-
(2010)
J Am Chem Soc
, vol.132
, Issue.40
, pp. 13978-13980
-
-
Wang, H.1
Cui, L.-F.2
Yang, Y.3
Sanchez Casalongue, H.4
Robinson, J.T.5
Liang, Y.6
-
18
-
-
84867509366
-
Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries
-
Yang Y, Pang R, Zhou X, Zhang Y, Wu H, Guo S. Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. J Mater Chem 2012;22(43):23194.
-
(2012)
J Mater Chem
, vol.22
, Issue.43
, pp. 23194
-
-
Yang, Y.1
Pang, R.2
Zhou, X.3
Zhang, Y.4
Wu, H.5
Guo, S.6
-
19
-
-
79959493471
-
Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density
-
Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 2011;21(12):2366-75.
-
(2011)
Adv Funct Mater
, vol.21
, Issue.12
, pp. 2366-2375
-
-
Fan, Z.1
Yan, J.2
Wei, T.3
Zhi, L.4
Ning, G.5
Li, T.6
-
20
-
-
81855177540
-
Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications
-
Xin Zhao CMH, Kung Mayfair C, Kung Harold H. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011;5(11):8739-49.
-
(2011)
ACS Nano
, vol.5
, Issue.11
, pp. 8739-8749
-
-
Xin Zhao, C.M.H.1
Kung Mayfair, C.2
Kung Harold, H.3
-
21
-
-
84893233266
-
Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures
-
Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 2014;6(4):1922-45.
-
(2014)
Nanoscale
, vol.6
, Issue.4
, pp. 1922-1945
-
-
Jiang, L.1
Fan, Z.2
-
22
-
-
84862014839
-
Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density
-
Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 2012;22(12):2632-41.
-
(2012)
Adv Funct Mater
, vol.22
, Issue.12
, pp. 2632-2641
-
-
Yan, J.1
Fan, Z.2
Sun, W.3
Ning, G.4
Wei, T.5
Zhang, Q.6
-
23
-
-
84881505318
-
Bulk preparation of holey graphene via controlled catalytic oxidation
-
Epub 2013/06/15
-
Lin Y, Watson KA, Kim JW, Baggett DW, Working DC, Connell JW. Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale 2013;5(17):7814-24. Epub 2013/06/15.
-
(2013)
Nanoscale
, vol.5
, Issue.17
, pp. 7814-7824
-
-
Lin, Y.1
Watson, K.A.2
Kim, J.W.3
Baggett, D.W.4
Working, D.C.5
Connell, J.W.6
-
24
-
-
84879622506
-
Making graphene Holey. Goldnanoparticle-mediated hydroxyl radical attack on reduced graphene oxide
-
Radich JG, Kamat PV. Making graphene Holey. Goldnanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano 2013;7(6):5546-57.
-
(2013)
ACS Nano
, vol.7
, Issue.6
, pp. 5546-5557
-
-
Radich, J.G.1
Kamat, P.V.2
-
25
-
-
77955547940
-
Graphene nanomesh by ZnO nanorod photocatalysts
-
Akhavan. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010;4(4):4174-80.
-
(2010)
ACS Nano
, vol.4
, Issue.4
, pp. 4174-4180
-
-
Akhavan1
-
26
-
-
76249106647
-
Reduction of graphene oxide via L-ascorbic acid
-
Zhang J, Yang H, Shen G, Cheng P, Guo S. Reduction of graphene oxide via L-ascorbic acid. Chem Commun 2010;46(7):1112-4.
-
(2010)
Chem Commun
, vol.46
, Issue.7
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Guo, S.5
-
27
-
-
79959275450
-
Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene
-
Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C 2011;115(24):11957-61.
-
(2011)
J Phys Chem C
, vol.115
, Issue.24
, pp. 11957-11961
-
-
Zhou, X.1
Zhang, J.2
Wu, H.3
Yang, H.4
Zhang, J.5
Guo, S.6
-
28
-
-
80052516803
-
Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability
-
Zhu J, Sun K, Sim D, Xu C, Zhang H, Hng HH, et al. Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. Chem Commun 2011;47(37):10383-5.
-
(2011)
Chem Commun
, vol.47
, Issue.37
, pp. 10383-10385
-
-
Zhu, J.1
Sun, K.2
Sim, D.3
Xu, C.4
Zhang, H.5
Hng, H.H.6
-
29
-
-
34548778589
-
Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes
-
Kuwana K, Saito K. Modeling ferrocene reactions and iron nanoparticle formation: application to CVD synthesis of carbon nanotubes. Proc Combust Inst 2007;31(2):1857-64.
-
(2007)
Proc Combust Inst
, vol.31
, Issue.2
, pp. 1857-1864
-
-
Kuwana, K.1
Saito, K.2
-
30
-
-
84855802688
-
Graphene annealing: How clean can it be?
-
Lin Y-C, Lu C-C, Yeh C-H, Jin C, Suenaga K, Chiu P-W. Graphene annealing: how clean can it be? Nano Lett 2011;12(1):414-9.
-
(2011)
Nano Lett
, vol.12
, Issue.1
, pp. 414-419
-
-
Lin, Y.-C.1
Lu, C.-C.2
Yeh, C.-H.3
Jin, C.4
Suenaga, K.5
Chiu, P.-W.6
-
31
-
-
77955529257
-
A one-step solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents
-
Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, et al. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 2010;4(7):3845-52.
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 3845-3852
-
-
Dubin, S.1
Gilje, S.2
Wang, K.3
Tung, V.C.4
Cha, K.5
Hall, A.S.6
-
32
-
-
67650684978
-
Hydrothermal dehydration for the ''Green'' reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties
-
Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. Hydrothermal dehydration for the ''Green'' reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 2009;21(13):2950-6.
-
(2009)
Chem Mater
, vol.21
, Issue.13
, pp. 2950-2956
-
-
Zhou, Y.1
Bao, Q.2
Tang, L.A.L.3
Zhong, Y.4
Loh, K.P.5
-
33
-
-
80053471898
-
Grapheneencapsulated iron microspheres on the graphene nanosheets
-
Guo P, Zhu G, Song H, Chen X, Zhang S. Grapheneencapsulated iron microspheres on the graphene nanosheets. Phys Chem Chem Phys 2011;13(39):17818-24.
-
(2011)
Phys Chem Chem Phys
, vol.13
, Issue.39
, pp. 17818-17824
-
-
Guo, P.1
Zhu, G.2
Song, H.3
Chen, X.4
Zhang, S.5
-
34
-
-
77949880674
-
The chemistry of graphene oxide
-
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010;39(1):228-40.
-
(2010)
Chem Soc Rev
, vol.39
, Issue.1
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
35
-
-
77956963862
-
Graphene and graphene oxide: Synthesis, properties, and applications
-
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010;22(35):3906-24.
-
(2010)
Adv Mater
, vol.22
, Issue.35
, pp. 3906-3924
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
-
36
-
-
78650092372
-
Improved synthesis of graphene oxide
-
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4(8):4806-14.
-
(2010)
ACS Nano
, vol.4
, Issue.8
, pp. 4806-4814
-
-
Marcano, D.C.1
Kosynkin, D.V.2
Berlin, J.M.3
Sinitskii, A.4
Sun, Z.5
Slesarev, A.6
-
37
-
-
34547199896
-
Preparation and characterization of graphene oxide paper
-
Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature 2007;448(7152):457-60.
-
(2007)
Nature
, vol.448
, Issue.7152
, pp. 457-460
-
-
Dikin, D.A.1
Stankovich, S.2
Zimney, E.J.3
Piner, R.D.4
Dommett, G.H.5
Evmenenko, G.6
-
38
-
-
84899111709
-
Defect-induced plating of lithium metal within porous graphene networks
-
Mukherjee R, Thomas AV, Datta D, Singh E, Li J, Eksik O, et al. Defect-induced plating of lithium metal within porous graphene networks. Nat Commun 2014;5. doi: 10.1038/ncomms4710.
-
(2014)
Nat Commun
, pp. 5
-
-
Mukherjee, R.1
Thomas, A.V.2
Datta, D.3
Singh, E.4
Li, J.5
Eksik, O.6
-
39
-
-
0000382665
-
X-ray investigation of highly saturated Li-graphite intercalation compound
-
Nalimova VA, Guérard D, Lelaurain M, Fateev OV. X-ray investigation of highly saturated Li-graphite intercalation compound. Carbon 1995;33(2):177-81.
-
(1995)
Carbon
, vol.33
, Issue.2
, pp. 177-181
-
-
Nalimova, V.A.1
Guérard, D.2
Lelaurain, M.3
Fateev, O.V.4
-
40
-
-
84859731808
-
Highperformance energy-storage architectures from carbon nanotubes and nanocrystal building blocks
-
Chen Z, Zhang D, Wang X, Jia X, Wei F, Li H, et al. Highperformance energy-storage architectures from carbon nanotubes and nanocrystal building blocks. Adv Mater 2012;24(15):2030-6.
-
(2012)
Adv Mater
, vol.24
, Issue.15
, pp. 2030-2036
-
-
Chen, Z.1
Zhang, D.2
Wang, X.3
Jia, X.4
Wei, F.5
Li, H.6
-
41
-
-
84855171411
-
Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage
-
Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ Sci 2012;5(1):5226-30.
-
(2012)
Energy Environ Sci
, vol.5
, Issue.1
, pp. 5226-5230
-
-
Luo, B.1
Fang, Y.2
Wang, B.3
Zhou, J.4
Song, H.5
Zhi, L.6
-
42
-
-
84862959968
-
A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries
-
Park S-K, Yu S-H, Pinna N, Woo S, Jang B, Chung Y-H, et al. A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries. J Mater Chem 2012;22(6):2520-5.
-
(2012)
J Mater Chem
, vol.22
, Issue.6
, pp. 2520-2525
-
-
Park, S.-K.1
Yu, S.-H.2
Pinna, N.3
Woo, S.4
Jang, B.5
Chung, Y.-H.6
-
43
-
-
79957872937
-
Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application
-
Kottegoda IRM, Idris NH, Lu L, Wang J-Z, Liu H-K. Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application. Electrochim Acta 2011;56(16):5815-22.
-
(2011)
Electrochim Acta
, vol.56
, Issue.16
, pp. 5815-5822
-
-
Kottegoda, I.R.M.1
Idris, N.H.2
Lu, L.3
Wang, J.-Z.4
Liu, H.-K.5
-
44
-
-
79551572427
-
CuO/graphene composite as anode materials for lithium-ion batteries
-
Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, et al. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta 2011;56(5):2306-11.
-
(2011)
Electrochim Acta
, vol.56
, Issue.5
, pp. 2306-2311
-
-
Mai, Y.J.1
Wang, X.L.2
Xiang, J.Y.3
Qiao, Y.Q.4
Zhang, D.5
Gu, C.D.6
|