메뉴 건너뛰기




Volumn 43, Issue 1, 2015, Pages 141-153

A study of the dynamic features of recommender systems

Author keywords

Collaborative filtering; Dynamic; Information overload; Recommender systems; Temporal

Indexed keywords

COLLABORATIVE FILTERING; DYNAMICS;

EID: 84921999911     PISSN: 02692821     EISSN: 15737462     Source Type: Journal    
DOI: 10.1007/s10462-012-9359-6     Document Type: Article
Times cited : (58)

References (76)
  • 1
    • 72249119951 scopus 로고    scopus 로고
    • Getting recommender systems to think outside the box. In: Proceedings of the third ACM conference on recommender systems RecSys 09, ACM Press
    • Abbassi Z, Amer-Yahia S, Lakshmanan LVS, Vassilvitskii S, Yu C (2009) Getting recommender systems to think outside the box. In: Proceedings of the third ACM conference on recommender systems RecSys 09, ACM Press, pp 285–288
    • (2009) pp 285–288
    • Abbassi, Z.1    Amer-Yahia, S.2    Lakshmanan, L.V.S.3    Vassilvitskii, S.4    Yu, C.5
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
    • Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6): 734–749
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 85016700256 scopus 로고    scopus 로고
    • Extending recommender systems: a multidimensional approach. In: Proceedings of the international joint conference on artificial intelligence IJCAI01 workshop on intelligent techniques for web personalization (ITWP2001). Seattle
    • Adomavicius G, Tuzhilin A (2001) Extending recommender systems: a multidimensional approach. In: Proceedings of the international joint conference on artificial intelligence IJCAI01 workshop on intelligent techniques for web personalization (ITWP2001). Seattle, pp 4–6
    • (2001) pp 4–6
    • Adomavicius, G.1    Tuzhilin, A.2
  • 4
    • 84902189471 scopus 로고    scopus 로고
    • Overcoming accuracy-diversity tradeoff in recommender systems: a variance-based approach. In: Proceedings of the 18th workshop on information technology and systems (WITS’08)
    • Adomavicius G, Kwon Y (2008) Overcoming accuracy-diversity tradeoff in recommender systems: a variance-based approach. In: Proceedings of the 18th workshop on information technology and systems (WITS’08), Paris
    • (2008) Paris
    • Adomavicius, G.1    Kwon, Y.2
  • 5
    • 0031103679 scopus 로고    scopus 로고
    • Fab: content-based, collaborative recommendation
    • Balabanovic M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3): 66–72
    • (1997) Commun ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 7
    • 72249091263 scopus 로고    scopus 로고
    • Context-based splitting of item ratings in collaborative filtering. In: Proceedings of the third ACM conference on recommender systems (RecSys 09), New York
    • Baltrunas L, Ricci F (2009) Context-based splitting of item ratings in collaborative filtering. In: Proceedings of the third ACM conference on recommender systems (RecSys 09), New York, pp 245–248
    • (2009) pp 245–248
    • Baltrunas, L.1    Ricci, F.2
  • 8
    • 84864631191 scopus 로고    scopus 로고
    • Context relevance assessment and exploitation in mobile recommender systems
    • Baltrunas L, Ludwig B, Peer S, Ricci F (2012) Context relevance assessment and exploitation in mobile recommender systems. Pers Ubiquitous Comput 16(5): 507–526
    • (2012) Pers Ubiquitous Comput , vol.16 , Issue.5 , pp. 507-526
    • Baltrunas, L.1    Ludwig, B.2    Peer, S.3    Ricci, F.4
  • 10
    • 38549172042 scopus 로고    scopus 로고
    • Hybrid web recommender systems
    • Springer, Berlin:
    • Burke R (2007) Hybrid web recommender systems. In: Brusilovsky A, Kobsa A, Nejdl W (eds) The adaptive web, vol 4321. Springer, Berlin, pp 377–408
    • (2007) The adaptive web , vol.4321 , pp. 377-408
    • Burke, R.1    Brusilovsky, A.2    Kobsa, A.3    Nejdl, W.4
  • 11
    • 78649917865 scopus 로고    scopus 로고
    • Evaluating the dynamic properties of recommendation algorithms. In: 4th ACM conference on recommender systems
    • Burke R (2010) Evaluating the dynamic properties of recommendation algorithms. In: 4th ACM conference on recommender systems, pp 225–228
    • (2010) pp 225–228
    • Burke, R.1
  • 13
    • 72249094564 scopus 로고    scopus 로고
    • A recommender system for dynamically evolving online forums. In: Proceedings of the third ACM conference on recommender systems (RecSys 09), New York
    • Castro-Herrera C, Cleland-Huang J, Mobasher B (2009) A recommender system for dynamically evolving online forums. In: Proceedings of the third ACM conference on recommender systems (RecSys 09), New York, pp 213–216
    • (2009) pp 213–216
    • Castro-Herrera, C.1    Cleland-Huang, J.2    Mobasher, B.3
  • 14
    • 63449128003 scopus 로고    scopus 로고
    • ACM conference on recommender systems (RecSys 08)
    • Celma Ò, Herrera P (2008) A new approach to evaluating novel recommendations. Proceedings of the 2008 ACM conference on recommender systems (RecSys 08), Lausanne, pp 179–186
    • (2008) Lausanne , pp. 179-186
    • Celma, Ò.1
  • 16
    • 38049083830 scopus 로고    scopus 로고
    • Content recommendation system based on private dynamic user profile
    • Chen T, Han W (2007) Content recommendation system based on private dynamic user profile. Mach Learn 4: 2112–2118
    • (2007) Mach Learn , vol.4 , pp. 2112-2118
    • Chen, T.1    Han, W.2
  • 17
    • 84863178480 scopus 로고    scopus 로고
    • A social network-based serendipity recommender system. In: International symposium on intelligent signal processing and communications systems ISPACS
    • Chiu Y-S, Lin K-H, Chen J-S (2011) A social network-based serendipity recommender system. In: International symposium on intelligent signal processing and communications systems ISPACS, pp 1–5
    • (2011) pp 1–5
    • Chiu, Y.-S.1    Lin, K.-H.2    Chen, J.-S.3
  • 18
    • 11244327748 scopus 로고    scopus 로고
    • Mining changes in customer buying behavior for collaborative recommendations
    • Cho YB, Cho YH, Kim SH (2005) Mining changes in customer buying behavior for collaborative recommendations. Expert Syst Appl 28(2): 359–369
    • (2005) Expert Syst Appl , vol.28 , Issue.2 , pp. 359-369
    • Cho, Y.B.1    Cho, Y.H.2    Kim, S.H.3
  • 19
    • 84865622435 scopus 로고    scopus 로고
    • Personalized recommendation on dynamic content using predictive Bilinear Models. In: 18th international WWW conference, Madrid
    • Chu W, Park ST (2009) Personalized recommendation on dynamic content using predictive Bilinear Models. In: 18th international conference, Madrid, pp 691–706
    • (2009) pp 691–706
    • Chu, W.1    Park, S.T.2
  • 20
    • 1842586819 scopus 로고    scopus 로고
    • A road map to more effective web personalization: integrating domain knowledge with web usage mining. In: Proceedings of the international conference on internet computing, Las Vegas
    • Dai H, Mobasher B (2003) A road map to more effective web personalization: integrating domain knowledge with web usage mining. In: Proceedings of the international conference on internet computing, Las Vegas, pp 1–8
    • (2003) pp 1–8
    • Dai, H.1    Mobasher, B.2
  • 21
    • 78649970121 scopus 로고    scopus 로고
    • Time dependency of data quality for collaborative filtering algorithms. In: Proceedings of the 2010 ACM conference on recommender systems (RecSys ‘10), New York
    • De Pessemier T, Dooms S, Deryckere T, Martens L (2010) Time dependency of data quality for collaborative filtering algorithms. In: Proceedings of the 2010 ACM conference on recommender systems (RecSys ‘10), New York, pp 281–284
    • (2010) pp 281–284
    • De Pessemier, T.1    Dooms, S.2    Deryckere, T.3    Martens, L.4
  • 22
    • 34548086523 scopus 로고    scopus 로고
    • Graph-based Sequence clustering through multiobjective evolutionary algorithms for web recommender systems
    • Demir GN, Sima Uyar S, Oguducu S (2007) Graph-based Sequence clustering through multiobjective evolutionary algorithms for web recommender systems. In: Thierens D (ed) Computer engineering, vol 2, pp 1943–1950
    • (2007) Computer engineering , vol.2 , pp. 1943-1950
    • Demir, G.N.1    Sima Uyar, S.2    Oguducu, S.3    Thierens, D.4
  • 23
    • 34548123490 scopus 로고    scopus 로고
    • Recency-based collaborative filtering
    • Darlinghurst, Australila:
    • Ding Y, Li X, Orlowska M (2006) Recency-based collaborative filtering. In: Gillian Dobbie and James Bailey (eds) Proceedings of the 17th Australasian Database Conference (ADC ’06), vol 49. Australian Computer Society, Inc., Darlinghurst, Australila, pp 99–107
    • (2006) Australian Computer Society, Inc. , vol.49 , pp. 99-107
    • Ding, Y.1    Li, X.2    Orlowska, M.3    Dobbie, G.4    Bailey, J.5
  • 24
    • 85016700088 scopus 로고    scopus 로고
    • Movie recommendations based in explicit and implicit features extracted from the Filmtipset dataset. In: Proceedings of the workshop on context-aware movie recommendation (CAMRa ’10). New York
    • Fernando D, Enrique C, Pedro G, Campos G, Alejandro B (2010) Movie recommendations based in explicit and implicit features extracted from the Filmtipset dataset. In: Proceedings of the workshop on context-aware movie recommendation (CAMRa ’10). New York, pp 45–52
    • (2010) pp 45–52
    • Fernando, D.1    Enrique, C.2    Pedro, G.3    Campos, G.4    Alejandro, B.5
  • 29
    • 78649970493 scopus 로고    scopus 로고
    • Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the fourth ACM conference on recommender system
    • Ge M, Delgado-Battenfeld C, Jannach D (2010) Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the fourth ACM conference on recommender system, pp 257–260
    • (2010) pp 257–260
    • Ge, M.1    Delgado-Battenfeld, C.2    Jannach, D.3
  • 31
    • 67349255848 scopus 로고    scopus 로고
    • Handling sequential pattern decay: developing a two-stage collaborative recommender system
    • Huang C-L, Huang W-L (2009) Handling sequential pattern decay: developing a two-stage collaborative recommender system. Electron Commer Res Appl 8(3): 117–129
    • (2009) Electron Commer Res Appl , vol.8 , Issue.3 , pp. 117-129
    • Huang, C.-L.1    Huang, W.-L.2
  • 32
    • 72549102789 scopus 로고    scopus 로고
    • Acceptance issues of personality-based recommender systems. In: Proceedings of the third ACM conference on recommender systems (RecSys ’09), New York
    • Hu R, Pearl P (2009) Acceptance issues of personality-based recommender systems. In: Proceedings of the third ACM conference on recommender systems (RecSys ’09), New York, pp 221–224
    • (2009) pp 221–224
    • Hu, R.1    Pearl, P.2
  • 33
    • 79953246287 scopus 로고    scopus 로고
    • Novelty and diversity in top-N recommendation— analysis and evaluation
    • Hurley N, Zhang M (2011) Novelty and diversity in top-N recommendation— analysis and evaluation. ACM Trans Internet Technol 10(4): 30
    • (2011) ACM Trans Internet Technol , vol.10 , Issue.4 , pp. 30
    • Hurley, N.1    Zhang, M.2
  • 34
    • 84979732541 scopus 로고    scopus 로고
    • Can a recommender system induce serendipitous encounters? E-commerce, IN-TECH
    • Iaquinta L, Gemmis M, Lops P, Semeraro G, Molino P (2010) Can a recommender system induce serendipitous encounters? E-commerce, IN-TECH, Vienna, pp 229–246
    • (2010) Vienna , pp. 229-246
    • Iaquinta, L.1    Gemmis, M.2    Lops, P.3    Semeraro, G.4    Molino, P.5
  • 36
    • 78649932916 scopus 로고    scopus 로고
    • Towards context-aware personalization and a broad perspective on the semantics of news articles. In: Proceedings of the fourth ACM conference on Recommender systems (RecSys ’10). New York
    • Jancsary J, Neubarth F, Trost F (2010) Towards context-aware personalization and a broad perspective on the semantics of news articles. In: Proceedings of the fourth ACM conference on Recommender systems (RecSys ’10). New York, pp 289–292
    • (2010) pp 289–292
    • Jancsary, J.1    Neubarth, F.2    Trost, F.3
  • 38
    • 85016706306 scopus 로고    scopus 로고
    • Incremental collaborative filtering via evolutionary. In: 4th ACM conference on recommender systems
    • Khoshneshin M, Street WN (2010) Incremental collaborative filtering via evolutionary. In: 4th ACM conference on recommender systems, pp 325–328
    • (2010) pp 325–328
    • Khoshneshin, M.1    Street, W.N.2
  • 39
    • 84858702721 scopus 로고    scopus 로고
    • Recommender systems: from algorithms to user experience
    • Konstan JA, Riedl J (2012) Recommender systems: from algorithms to user experience. User Model User Adapt Interact 22(1–2): 101–123
    • (2012) User Model User Adapt Interact , vol.22 , Issue.1-2 , pp. 101-123
    • Konstan, J.A.1    Riedl, J.2
  • 40
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’09). New York
    • Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’09). New York, pp 447–456
    • (2009) pp 447–456
    • Koren, Y.1
  • 41
    • 63449119662 scopus 로고    scopus 로고
    • Improving top-n recommendation techniques using rating variance. In: Proceedings of the 2008 ACM conference on recommender systems (RecSys 08), Lausanne
    • Kwon Y (2008) Improving top-n recommendation techniques using rating variance. In: Proceedings of the 2008 ACM conference on recommender systems (RecSys 08), Lausanne, pp 307–310
    • (2008) pp 307–310
    • Kwon, Y.1
  • 42
    • 84858854898 scopus 로고    scopus 로고
    • Personalized real-time location-tagged contents recommender system based on mobile social networks. In: IEEE international conference on consumer electronics ICCE
    • Kwon H-J, Hong K-S (2012) Personalized real-time location-tagged contents recommender system based on mobile social networks. In: IEEE international conference on consumer electronics ICCE, pp 558–559
    • (2012) pp 558–559
    • Kwon, H.-J.1    Hong, K.-S.2
  • 43
    • 63449124336 scopus 로고    scopus 로고
    • Lathia N, Hailes S, Capra V (2008) kNN CF: a temporal social network. In: Proceedings of the 2008 ACM conference on recommender systems, Lausanne, pp 227–234
    • Lathia N, Hailes S, Capra V (2008) kNN CF: a temporal social network. In: Proceedings of the 2008 ACM conference on recommender systems, Lausanne, pp 227–234
  • 46
    • 38649100585 scopus 로고    scopus 로고
    • A time-based approach to effective recommender systems using implicit feedback
    • Lee T, Park Y (2008) A time-based approach to effective recommender systems using implicit feedback. Expert Syst Appl 34(4): 3055–3062
    • (2008) Expert Syst Appl , vol.34 , Issue.4 , pp. 3055-3062
    • Lee, T.1    Park, Y.2
  • 48
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: item-to-item collaborative filtering
    • Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80
    • (2003) IEEE Internet Comput , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 49
    • 33847106047 scopus 로고    scopus 로고
    • Dynamic selection of web services with recommendation system. In: International conference on next generation web services practices (NWeSP05)
    • Manikrao US, Prabhakar TV (2005) Dynamic selection of web services with recommendation system. In: International conference on next generation web services practices (NWeSP05), pp 117–121
    • (2005) pp 117–121
    • Manikrao, U.S.1    Prabhakar, T.V.2
  • 50
    • 85016686646 scopus 로고    scopus 로고
    • Social tagging recommender systems. In: Francesco Ricci et al.(ed) Recommender systems handbook. Springer
    • Marinho Balby L, Nanopoulos A, Schmidt-thieme L (2011) Social tagging recommender systems. In: Francesco Ricci et al.(ed) Recommender systems handbook. Springer, pp 615–644
    • (2011) pp 615–644
    • Marinho Balby, L.1    Nanopoulos, A.2    Schmidt-thieme, L.3
  • 51
    • 11244275592 scopus 로고    scopus 로고
    • Detection of the customer time-variant pattern for improving recommender systems
    • Min SHm, Han I (2005) Detection of the customer time-variant pattern for improving recommender systems. Expert Syst Appl 28(2): 189–199
    • (2005) Expert Syst Appl , vol.28 , Issue.2 , pp. 189-199
    • Min, S.H.1    Han, I.2
  • 52
    • 0033365032 scopus 로고    scopus 로고
    • Text-learning and related intelligent agents: a survey
    • Mladenic D (1999) Text-learning and related intelligent agents: a survey. IEEE Intell Syst Appl 14(4):44–54
    • (1999) IEEE Intell Syst Appl , vol.14 , Issue.4 , pp. 44-54
    • Mladenic, D.1
  • 53
    • 42149114079 scopus 로고    scopus 로고
    • Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering. In: Proceedings of the 2007 ACM conference on recommender systems
    • Nathanson T, Bitton E, Goldberg K (2007) Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering. In: Proceedings of the 2007 ACM conference on recommender systems, pp 149–152
    • (2007) pp 149–152
    • Nathanson, T.1    Bitton, E.2    Goldberg, K.3
  • 54
    • 85016701575 scopus 로고    scopus 로고
    • Fusion-based recommender system. In: ACM RecSys workshop on novelty and diversity in recommender systems (DivRS)
    • Oku K, Hattori F (2011) Fusion-based recommender system. In: ACM RecSys workshop on novelty and diversity in recommender systems (DivRS), pp 1–7
    • (2011) pp 1–7
    • Oku, K.1    Hattori, F.2
  • 55
    • 72249085351 scopus 로고    scopus 로고
    • Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. In: Proceedings of the third ACM conference on recommender systems
    • Panniello U, Tuzhilin A, Gorgoglione M, Palmisano C, Pedone A (2009) Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. In: Proceedings of the third ACM conference on recommender systems, pp 3–6
    • (2009) pp 3–6
    • Panniello, U.1    Tuzhilin, A.2    Gorgoglione, M.3    Palmisano, C.4    Pedone, A.5
  • 57
    • 42149134882 scopus 로고    scopus 로고
    • Incorporating user control into recommender systems based on naive bayesian classification. In: Proceedings of the 2007 ACM conference on recommender systems (RecSys 07), Minneapolis
    • Pronk V, Verhaegh W, Proidl A, Tiemann M (2007) Incorporating user control into recommender systems based on naive bayesian classification. In: Proceedings of the 2007 ACM conference on recommender systems (RecSys 07), Minneapolis, pp 73–80
    • (2007) pp 73–80
    • Pronk, V.1    Verhaegh, W.2    Proidl, A.3    Tiemann, M.4
  • 59
    • 0031104254 scopus 로고    scopus 로고
    • Recommender systems
    • Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40(3): 56–58
    • (1997) Commun ACM , vol.40 , Issue.3 , pp. 56-58
    • Resnick, P.1    Varian, H.R.2
  • 60
    • 78649948983 scopus 로고    scopus 로고
    • Identifying and utilizing contextual data in hybrid recommender systems. Im: Proceedings of the 2010 ACM conference on recommender systems
    • Said A (2010) Identifying and utilizing contextual data in hybrid recommender systems. Im: Proceedings of the 2010 ACM conference on recommender systems, Barcelona, pp 365–368
    • (2010) Barcelona , pp. 365-368
    • Said, A.1
  • 64
    • 0030857734 scopus 로고    scopus 로고
    • Direct manipulation for comprehensible, predictable, and controllable user interfaces. In: Proceedings of international conference on intelligent user interfaces (IUI97), Orlando
    • Shneiderman B (1997) Direct manipulation for comprehensible, predictable, and controllable user interfaces. In: Proceedings of international conference on intelligent user interfaces (IUI97), Orlando, pp 33–39
    • (1997) pp 33–39
    • Shneiderman, B.1
  • 66
    • 63449127982 scopus 로고    scopus 로고
    • Implications of psychological phenomenons for recommender systems. In: Proceedings of the 2008 ACM conference on Recommender systems RecSys 08, Lausanne
    • Teppan EC (2008) Implications of psychological phenomenons for recommender systems. In: Proceedings of the 2008 ACM conference on Recommender systems RecSys 08, Lausanne, pp 323–326
    • (2008) pp 323–326
    • Teppan, E.C.1
  • 68
    • 84942123264 scopus 로고    scopus 로고
    • Bentley PJ (2003) Particle swarm optimization recommender system
    • SIS, Indianapolis:
    • Ujjin S, Bentley PJ (2003) Particle swarm optimization recommender system. In: Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, pp 124–131
    • (2003) symposium , vol.2003 , pp. 124-131
    • Ujjin, S.1
  • 69
    • 85016671951 scopus 로고    scopus 로고
    • Fourth BCS-IRSG symposium on future directions in information access (FDIA 2011), Koblenz
    • Vargas S (2011) New approaches to diversity and novelty in recommender systems. In: Fourth BCS-IRSG symposium on future directions in information access (FDIA 2011), Koblenz, 31 August 2011
    • (2011) 31
  • 71
    • 48149104243 scopus 로고    scopus 로고
    • IEEEWICACM international conferences on web intelligence and intelligent agent technology workshops
    • Vellino A, Zeber D (2007) A hybrid, multi-dimensional recommender for journal articles in a scientific digital library. In: 2007 IEEEWICACM international conferences on web intelligence and intelligent agent technology workshops, pp 111–114
    • (2007) pp 111–114
    • Vellino, A.1
  • 72
    • 48149098945 scopus 로고    scopus 로고
    • IEEEWICACM international conferences on web intelligence and intelligent agent technology workshops
    • Woerndl W, Groh G (2007) Utilizing physical and social context to improve recommender systems. In: 2007 IEEEWICACM international conferences on web intelligence and intelligent agent technology workshops, pp 123–128
    • (2007) pp 123–128
    • Woerndl, W.1
  • 75
    • 84867038069 scopus 로고    scopus 로고
    • The state-of-the-art in personalized recommender systems for social networking
    • Zhou X, Xu Y, Li Y, Josang A, Cox C (2011) The state-of-the-art in personalized recommender systems for social networking. Artif Intell Rev 37(2): 119–132
    • (2011) Artif Intell Rev , vol.37 , Issue.2 , pp. 119-132
    • Zhou, X.1    Xu, Y.2    Li, Y.3    Josang, A.4    Cox, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.