메뉴 건너뛰기




Volumn , Issue , 2010, Pages 219-226

Efficiently extract recurring tree fragments from large treebanks

Author keywords

[No Author keywords available]

Indexed keywords

SYNTACTICS; TREES (MATHEMATICS);

EID: 84921904231     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (20)
  • 2
    • 0003309971 scopus 로고
    • A computational model of language performance: Data oriented parsing
    • Rens Bod. 1992. A Computational Model Of Language Performance: Data Oriented Parsing. In COLING, pages 855-859.
    • (1992) COLING , pp. 855-859
    • Bod, R.1
  • 3
    • 0009626003 scopus 로고    scopus 로고
    • What is the minimal set of fragments that achieves maximal parse accuracy?
    • Rens Bod. 2001. What is the minimal set of fragments that achieves maximal parse accuracy? In ACL, pages 66-73.
    • (2001) ACL , pp. 66-73
    • Bod, R.1
  • 4
    • 85118440282 scopus 로고    scopus 로고
    • Automatic extraction of subcategorization from corpora
    • Washington, DC, USA, March. Association for Computational Linguistics
    • Ted Briscoe and John Carroll. 1997. Automatic extraction of subcategorization from corpora. In Proceedings of the Fifth Conference on Applied Natural Language Processing, pages 356-363, Washington, DC, USA, March. Association for Computational Linguistics.
    • (1997) Proceedings of the Fifth Conference on Applied Natural Language Processing , pp. 356-363
    • Briscoe, T.1    Carroll, J.2
  • 5
    • 84907334477 scopus 로고    scopus 로고
    • Statistical parsing with an automatically-extracted tree adjoining grammar
    • Morristown, NJ, USA. Association for Computational Linguistics
    • David Chiang. 2000. Statistical parsing with an automatically-extracted tree adjoining grammar. In ACL '00: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pages 456-463, Morristown, NJ, USA. Association for Computational Linguistics.
    • (2000) ACL '00: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics , pp. 456-463
    • Chiang, D.1
  • 7
    • 1942419006 scopus 로고    scopus 로고
    • Convolution kernels for natural language
    • Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors MIT Press
    • Michael Collins and Nigel Duffy. 2001. Convolution Kernels for Natural Language. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, NIPS, pages 625-632. MIT Press.
    • (2001) NIPS , pp. 625-632
    • Collins, M.1    Duffy, N.2
  • 9
    • 85037525116 scopus 로고    scopus 로고
    • A comparison of statistical models for the extraction of lexical information from text corpora
    • Boston, USA, 31 July 2 August
    • Simon Dennis. 2003. A comparison of statistical models for the extraction of lexical information from text corpora. In Proceedings 25th Annual Meeting of the Cognitive Science Society (CogSci 2003), Boston, USA, 31 July 2 August.
    • (2003) Proceedings 25th Annual Meeting of the Cognitive Science Society (CogSci 2003)
    • Dennis, S.1
  • 12
    • 0003096032 scopus 로고    scopus 로고
    • Grammatical constructions and linguistic generalizations: The what's x doing y? Construction
    • Paul Kay and Charles J. Fillmore. 1997. Grammatical constructions and linguistic generalizations: the what's x doing y? construction. Language, 75:1-33.
    • (1997) Language , vol.75 , pp. 1-33
    • Kay, P.1    Fillmore, C.J.2
  • 13
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The penn treebank
    • Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 14
    • 33750333944 scopus 로고    scopus 로고
    • Efficient convolution kernels for dependency and constituent syntactic trees
    • Berlin, Germany, September. Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Proceedings
    • Alessandro Moschitti. 2006. Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In ECML, pages 318-329, Berlin, Germany, September. Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Proceedings.
    • (2006) ECML , pp. 318-329
    • Moschitti, A.1
  • 16
    • 84893401998 scopus 로고    scopus 로고
    • A simple dop model for constituency parsing of Italian sentences
    • Federico Sangati. 2009. A simple dop model for constituency parsing of italian sentences. In Proceedings of EVALITA 2009.
    • (2009) Proceedings of EVALITA 2009
    • Sangati, F.1
  • 17
    • 0034176188 scopus 로고    scopus 로고
    • The item-based nature of children's early syntactic development
    • Michael Tomasello. 2000. The item-based nature of children's early syntactic development. Trends in cognitive sciences, 4:156-163.
    • (2000) Trends in Cognitive Sciences , vol.4 , pp. 156-163
    • Tomasello, M.1
  • 18
    • 46749104122 scopus 로고    scopus 로고
    • A novel algorithm for counting all common subsequences
    • IEEE International Conference on, 0
    • Hui Wang and Zhiwei Lin. 2007. A novel algorithm for counting all common subsequences. Granular Computing, IEEE International Conference on, 0:502.
    • (2007) Granular Computing , pp. 502
    • Wang, H.1    Lin, Z.2
  • 19
    • 44849105166 scopus 로고    scopus 로고
    • What are the productive units of natural language grammar?: A DOP approach to the automatic identification of constructions
    • Morristown, NJ, USA. Association for Computational Linguistics
    • Willem Zuidema. 2006. What are the productive units of natural language grammar?: a DOP approach to the automatic identification of constructions. In CoNLL-X '06: Proceedings of the Tenth Conference on Computational Natural Language Learning, pages 29-36, Morristown, NJ, USA. Association for Computational Linguistics.
    • (2006) CoNLL-X '06: Proceedings of the Tenth Conference on Computational Natural Language Learning , pp. 29-36
    • Zuidema, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.