메뉴 건너뛰기




Volumn 39, Issue , 2015, Pages 235-244

Fuzzy clustering of time series data using dynamic time warping distance

Author keywords

Clustering time series; Dynamic Time Warping (DTW); Fuzzy clustering; Hybrid approach

Indexed keywords

CLUSTER ANALYSIS; FUZZY CLUSTERING; FUZZY SYSTEMS; TIME SERIES;

EID: 84921815378     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2014.12.015     Document Type: Article
Times cited : (253)

References (33)
  • 1
    • 84865005617 scopus 로고    scopus 로고
    • Correlation based dynamic time warping of multivariate time series
    • Z. Bankó, and J. Abonyi Correlation based dynamic time warping of multivariate time series Expert Syst. Appl. 39 17 2012 12814 12823
    • (2012) Expert Syst. Appl. , vol.39 , Issue.17 , pp. 12814-12823
    • Bankó, Z.1    Abonyi, J.2
  • 6
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • Ding, H.; Trajcevski, G.; Scheuermann, P.; X. Wang, Keogh, E.; 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB Endowment, pp. 1542-1552.
    • (2008) Proceedings of the VLDB Endowment , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4
  • 7
    • 70449527565 scopus 로고    scopus 로고
    • Autocorrelation-based fuzzy clustering of time series
    • P. DUrso, and E.A. Maharaj Autocorrelation-based fuzzy clustering of time series Fuzzy Sets Syst. 160 24 2009 3565 3589
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.24 , pp. 3565-3589
    • Durso, P.1    Maharaj, E.A.2
  • 8
    • 84871210043 scopus 로고    scopus 로고
    • Time-series data mining
    • Article 12
    • P. Esling, and C. Agon Time-series data mining ACM Comput. Surv. 45 1 2012 Article 12
    • (2012) ACM Comput. Surv. , vol.45 , Issue.1
    • Esling, P.1    Agon, C.2
  • 9
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • T.-C. Fu A review on time series data mining Eng. Appl. Artif. Intell. 24 1 2011 164 181
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.1 , pp. 164-181
    • Fu, T.-C.1
  • 11
    • 0030130811 scopus 로고    scopus 로고
    • Nonlinear alignment and averaging for estimating the evoked potential
    • L. Gupta, D. Molfese, R. Tammana, and P. Simos Nonlinear alignment and averaging for estimating the evoked potential IEEE Trans. Biomed. Eng. 43 4 1996 348 356
    • (1996) IEEE Trans. Biomed. Eng. , vol.43 , Issue.4 , pp. 348-356
    • Gupta, L.1    Molfese, D.2    Tammana, R.3    Simos, P.4
  • 13
    • 84888431725 scopus 로고    scopus 로고
    • Agreement-based Fuzzy C-Means for clustering data with blocks of features
    • H. Izakian, and W. Pedrycz Agreement-based Fuzzy C-Means for clustering data with blocks of features Neurocomputing 127 2014 266 280
    • (2014) Neurocomputing , vol.127 , pp. 266-280
    • Izakian, H.1    Pedrycz, W.2
  • 14
    • 84958102115 scopus 로고    scopus 로고
    • Anomaly detection and characterization in spatial time series data: A cluster-centric approach
    • H. Izakian, and W. Pedrycz Anomaly detection and characterization in spatial time series data: a cluster-centric approach IEEE Trans. Fuzzy Syst. 22 6 2014 1063 6706
    • (2014) IEEE Trans. Fuzzy Syst. , vol.22 , Issue.6 , pp. 1063-6706
    • Izakian, H.1    Pedrycz, W.2
  • 15
    • 84885576232 scopus 로고    scopus 로고
    • Clustering spatio-temporal data: An augmented fuzzy C-Means
    • H. Izakian, W. Pedrycz, and I. Jamal Clustering spatio-temporal data: an augmented fuzzy C-Means IEEE Trans. Fuzzy Syst. 21 5 2013 855 868
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.5 , pp. 855-868
    • Izakian, H.1    Pedrycz, W.2    Jamal, I.3
  • 16
    • 79957533818 scopus 로고    scopus 로고
    • Weighted dynamic time warping for time series classification
    • Y.-S. Jeong, M.K. Jeong, and O.A. Omitaomu Weighted dynamic time warping for time series classification Pattern Recognit. 44 9 2011 2231 2240
    • (2011) Pattern Recognit. , vol.44 , Issue.9 , pp. 2231-2240
    • Jeong, Y.-S.1    Jeong, M.K.2    Omitaomu, O.A.3
  • 18
    • 0035416012 scopus 로고    scopus 로고
    • Low-complexity fuzzy relational clustering algorithms for web mining
    • R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi Low-complexity fuzzy relational clustering algorithms for web mining IEEE Trans. Fuzzy Syst. 9 4 2001 595 607
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 595-607
    • Krishnapuram, R.1    Joshi, A.2    Nasraoui, O.3    Yi, L.4
  • 19
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • T.W. Liao Clustering of time series data - a survey Pattern Recognit. 38 11 2005 1857 1874
    • (2005) Pattern Recognit. , vol.38 , Issue.11 , pp. 1857-1874
    • Liao, T.W.1
  • 21
    • 78751648727 scopus 로고    scopus 로고
    • Fuzzy clustering of time series in the frequency domain
    • E.A. Maharaj, and P. DUrso Fuzzy clustering of time series in the frequency domain Inf. Sci. 181 7 2011 1187 1211
    • (2011) Inf. Sci. , vol.181 , Issue.7 , pp. 1187-1211
    • Maharaj, E.A.1    Durso, P.2
  • 23
    • 77957844570 scopus 로고    scopus 로고
    • Clustering Indian stock market data for portfolio management
    • S.R. Nanda, B. Mahanty, and M.K. Tiwari Clustering Indian stock market data for portfolio management Expert Syst. Appl. 37 12 2010 8793 8798
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8793-8798
    • Nanda, S.R.1    Mahanty, B.2    Tiwari, M.K.3
  • 26
    • 81955161817 scopus 로고    scopus 로고
    • Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment
    • F. Petitjean, and P. Gançarski Summarizing a set of time series by averaging: from Steiner sequence to compact multiple alignment Theor. Comput. Sci. 414 2012 76 91
    • (2012) Theor. Comput. Sci. , vol.414 , pp. 76-91
    • Petitjean, F.1    Gançarski, P.2
  • 27
    • 78649324794 scopus 로고    scopus 로고
    • A global averaging method for dynamic time warping, with applications to clustering
    • F. Petitjean, A. Ketterlin, and P. Gancarski A global averaging method for dynamic time warping, with applications to clustering Pattern Recognit. 44 3 2011 678 693
    • (2011) Pattern Recognit. , vol.44 , Issue.3 , pp. 678-693
    • Petitjean, F.1    Ketterlin, A.2    Gancarski, P.3
  • 28
    • 0036532775 scopus 로고    scopus 로고
    • Bayesian clustering by dynamics
    • M. Ramoni, P. Sebastiani, and P. Cohen Bayesian clustering by dynamics Mach. Learn. 47 1 2002 91 121
    • (2002) Mach. Learn. , vol.47 , Issue.1 , pp. 91-121
    • Ramoni, M.1    Sebastiani, P.2    Cohen, P.3
  • 30
    • 41749090269 scopus 로고    scopus 로고
    • Toward accurate dynamic time warping in linear time and space
    • S. Salvador, and P. Chan Toward accurate dynamic time warping in linear time and space Intell. Data Anal. 11 5 2007 561 580
    • (2007) Intell. Data Anal. , vol.11 , Issue.5 , pp. 561-580
    • Salvador, S.1    Chan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.