메뉴 건너뛰기




Volumn 8679, Issue , 2014, Pages 190-197

Network-guided group feature selection for classification of autism spectrum disorder

Author keywords

[No Author keywords available]

Indexed keywords

DISEASES; SUPPORT VECTOR MACHINES; ARTIFICIAL INTELLIGENCE; COMPUTER AIDED INSTRUCTION; FEATURE EXTRACTION; LEARNING SYSTEMS;

EID: 84921691392     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-10581-9_24     Document Type: Article
Times cited : (3)

References (23)
  • 1
    • 79952317258 scopus 로고    scopus 로고
    • Structural and functional magnetic resonance imaging of autism spectrum disorders
    • Stigler, K.A., et al.: Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Research 1380, 146-161 (2011)
    • (2011) Brain Research , vol.1380 , pp. 146-161
    • Stigler, K.A.1
  • 2
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186-198 (2009)
    • (2009) Nat. Rev. Neurosci , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 4
    • 84894612931 scopus 로고    scopus 로고
    • Connectivity subnetwork learning for pathology and developmental variations
    • In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.), Springer, Heidelberg
    • Ghanbari, Y., Smith, A.R., Schultz, R.T., Verma, R.: Connectivity subnetwork learning for pathology and developmental variations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 90-97. Springer, Heidelberg (2013)
    • (2013) MICCAI 2013, Part I. LNCS , vol.8149 , pp. 90-97
    • Ghanbari, Y.1    Smith, A.R.2    Schultz, R.T.3    Verma, R.4
  • 5
    • 84888868882 scopus 로고    scopus 로고
    • Fledgling pathoconnectomics of psychiatric disorders
    • Rubinov, M., Bullmore, E.: Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Sciences 17(12), 641-647 (2013)
    • (2013) Trends in Cognitive Sciences , vol.17 , Issue.12 , pp. 641-647
    • Rubinov, M.1    Bullmore, E.2
  • 6
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
    • Ecker, C., et al.: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49(1), 44-56 (2010)
    • (2010) Neuroimage , vol.49 , Issue.1 , pp. 44-56
    • Ecker, C.1
  • 7
    • 78349291518 scopus 로고    scopus 로고
    • DTI based diagnostic prediction of a disease via pattern classification
    • In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.), Springer, Heidelberg
    • Ingalhalikar, M., Kanterakis, S., Gur, R., Roberts, T.P.L., Verma, R.: DTI based diagnostic prediction of a disease via pattern classification. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 558-565. Springer, Heidelberg (2010)
    • (2010) MICCAI 2010, Part I. LNCS , vol.6361 , pp. 558-565
    • Ingalhalikar, M.1    Kanterakis, S.2    Gur, R.3    Roberts, T.4    Verma, R.5
  • 8
    • 84921641307 scopus 로고    scopus 로고
    • Learning to Classify Psychiatric Disorders based on fMR Images: Autism vs Healthy and ADHD vs Healthy
    • Ghiassian, S., et al.: Learning to Classify Psychiatric Disorders based on fMR Images: Autism vs Healthy and ADHD vs Healthy. In: MLINI (2013)
    • (2013) MLINI
    • Ghiassian, S.1
  • 9
    • 84867156463 scopus 로고    scopus 로고
    • Multiscale mining of fMRI data with hierarchical structured sparsity
    • Jenatton, R., et al.: Multiscale mining of fMRI data with hierarchical structured sparsity. SIAM J. on Imaging Sciences 5(3), 835-856 (2012)
    • (2012) SIAM J. On Imaging Sciences , vol.5 , Issue.3 , pp. 835-856
    • Jenatton, R.1
  • 10
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • Orrú, G., et al.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosc. Biobeh. Rev. 36(4), 1140-1152 (2012)
    • (2012) Neurosc. Biobeh. Rev , vol.36 , Issue.4 , pp. 1140-1152
    • Orrú, G.1
  • 12
    • 84870022355 scopus 로고    scopus 로고
    • The UCLA multimodal connectivity database: A web-based platform for brain connectivity matrix sharing and analysis
    • Brown, J.A., et al.: The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Frontiers in Neuroinformatics 6 (2012)
    • (2012) Frontiers in Neuroinformatics , pp. 6
    • Brown, J.A.1
  • 14
    • 81355153871 scopus 로고    scopus 로고
    • Functional network organization of the human brain
    • Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665-678 (2011)
    • (2011) Neuron , vol.72 , Issue.4 , pp. 665-678
    • Power, J.D.1
  • 15
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE TPAMI 27(8), 1226-1238 (2005)
    • (2005) IEEE TPAMI , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 16
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown, G., et al.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. JMLR 13, 27-66 (2012)
    • (2012) JMLR , vol.13 , pp. 27-66
    • Brown, G.1
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389-422 (2002)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 84879900677 scopus 로고    scopus 로고
    • Efficient network-guided multi-locus association mapping with graph cuts
    • Azencott, C.A., et al.: Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics 29(13), 1171-1179 (2013)
    • (2013) Bioinformatics , vol.29 , Issue.13 , pp. 1171-1179
    • Azencott, C.A.1
  • 21
    • 84856213605 scopus 로고    scopus 로고
    • Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography
    • Langen, M., et al.: Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography. Cortex 48(2), 183-193 (2012)
    • (2012) Cortex , vol.48 , Issue.2 , pp. 183-193
    • Langen, M.1
  • 22
    • 82855175124 scopus 로고    scopus 로고
    • Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links
    • Vissers, M.E., et al.: Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci. Biobehav. Rev. 36(1), 604-625 (2012)
    • (2012) Neurosci. Biobehav. Rev , vol.36 , Issue.1 , pp. 604-625
    • Vissers, M.E.1
  • 23
    • 84867674064 scopus 로고    scopus 로고
    • Diffusion tensor imaging in autism spectrum disorder: A review
    • Travers, B.G., et al.: Diffusion tensor imaging in autism spectrum disorder: A review. Autism Research 5(5), 289-313 (2012)
    • (2012) Autism Research , vol.5 , Issue.5 , pp. 289-313
    • Travers, B.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.