-
1
-
-
67349251900
-
Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)
-
COI: 1:CAS:528:DC%2BD1MXktFaktrw%3D
-
Hudson, S.D. & Chumanov, G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem.394, 679–86 (2009).
-
(2009)
Anal. Bioanal. Chem.
, vol.394
, pp. 679-686
-
-
Hudson, S.D.1
Chumanov, G.2
-
2
-
-
33748803030
-
Surface-enhanced Raman spectroscopy: a brief perspective
-
COI: 1:CAS:528:DC%2BD28XhtFSks7jI
-
Moskovits, M. Surface-enhanced Raman spectroscopy: a brief perspective. Top. Appl. Phys.103, 1–7 (2006).
-
(2006)
Top. Appl. Phys.
, vol.103
, pp. 1-17
-
-
Moskovits, M.1
-
3
-
-
84904190290
-
A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering
-
COI: 1:CAS:528:DC%2BC2cXkslCqtLg%3D
-
Kang, M. et al. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering. Adv. Mater.26, 4510–514 (2014).
-
(2014)
Adv. Mater.
, vol.26
, pp. 4510-4514
-
-
Kang, M.1
-
4
-
-
24144442879
-
-
Chaney, S.B., Shanmukh, S., Dluhy, R.A. & Zhao, Y.P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl. Phys. Lett. 87, 031908 (2005)
-
Chaney, S.B., Shanmukh, S., Dluhy, R.A. & Zhao, Y.P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl. Phys. Lett.87, 031908 (2005).
-
-
-
-
5
-
-
41049092368
-
-
Li, K.B., Clime, L.V., Cui, B. & Veres, T. Surface enhanced Raman scattering on long-range ordered noblemetal nanocrescent arrays. Nanotechnology 19, 145305 (2008)
-
Li, K.B., Clime, L.V., Cui, B. & Veres, T. Surface enhanced Raman scattering on long-range ordered noblemetal nanocrescent arrays. Nanotechnology19, 145305 (2008).
-
-
-
-
6
-
-
33646033744
-
Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract
-
COI: 1:CAS:528:DC%2BD28XitFOitLY%3D
-
Chandran, S.P. et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Progr.22, 577–83 (2006).
-
(2006)
Biotechnol. Progr.
, vol.22
, pp. 577-583
-
-
Chandran, S.P.1
-
7
-
-
58149166590
-
The synthesis of SERS-active gold nanoflower tags for in vivo applications
-
COI: 1:CAS:528:DC%2BD1cXhsFaqsbrN
-
Xie, J.P., Zhang, Q.B., Lee, J.Y. & Wang, D.I.C. The synthesis of SERS-active gold nanoflower tags for in vivo applications. Acs. Nano.2, 2473–480 (2008).
-
(2008)
Acs. Nano.
, vol.2
, pp. 2473-2480
-
-
Xie, J.P.1
Zhang, Q.B.2
Lee, J.Y.3
Wang, D.I.C.4
-
8
-
-
61949286601
-
Isolating and probing the hot spot formed between two silver nanocubes
-
COI: 1:CAS:528:DC%2BD1MXktFensbw%3D
-
Camargo, P.H.C., Rycenga, M., Au, L. & Xia, Y.N. Isolating and probing the hot spot formed between two silver nanocubes. Angew. Chem. Int. Edit. 48, 2180–184 (2009).
-
(2009)
Angew. Chem. Int. Edit.
, vol.48
, pp. 2180-2184
-
-
Camargo, P.H.C.1
Rycenga, M.2
Au, L.3
Xia, Y.N.4
-
9
-
-
34948911842
-
Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches
-
COI: 1:CAS:528:DC%2BD2sXptlals78%3D
-
Zhang, T.R. et al. Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches. J. Phys. Chem. C111, 13691–3695 (2007).
-
(2007)
J. Phys. Chem
, vol.111
, pp. 13691-13695
-
-
Zhang, T.R.1
-
10
-
-
65249143964
-
Electrochemical SERS at periodic metallic nanopyramid arrays
-
COI: 1:CAS:528:DC%2BD1MXjtVemsw%3D%3D
-
Lin, T.H. et al. Electrochemical SERS at periodic metallic nanopyramid arrays. J. Phys. Chem. C113, 1367–372 (2009).
-
(2009)
J. Phys. Chem.
, vol.113
, pp. 1367-1372
-
-
Lin, T.H.1
-
11
-
-
78651281207
-
Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance
-
COI: 1:CAS:528:DC%2BC3MXjtVSmtA%3D%3D
-
Oh, Y.J. et al. Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. Small7, 184–88 (2011).
-
(2011)
Small
, vol.7
, pp. 184-188
-
-
Oh, Y.J.1
-
12
-
-
84860338327
-
Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering
-
COI: 1:CAS:528:DC%2BC38XksV2jtrY%3D
-
Oh, Y.J. & Jeong, K.H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater.24, 2234–237 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 2234-2237
-
-
Oh, Y.J.1
Jeong, K.H.2
-
13
-
-
84893475563
-
Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels
-
COI: 1:CAS:528:DC%2BC2cXhs1yhtbg%3D
-
Oh, Y.J. & Jeong, K.H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Lab Chip 14, 865–68 (2014).
-
(2014)
Lab Chip
, vol.14
, pp. 865-868
-
-
Oh, Y.J.1
Jeong, K.H.2
-
14
-
-
84891840435
-
Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates
-
COI: 1:CAS:528:DC%2BC2cXivValtw%3D%3D
-
Krishnan, J.N. et al. Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates. BioChip J.7, 375–85 (2013).
-
(2013)
BioChip J.
, vol.7
, pp. 375-585
-
-
Krishnan, J.N.1
-
15
-
-
80052998881
-
Selfassembled SERS substrates with tunable surface plasmon resonances
-
COI: 1:CAS:528:DC%2BC3MXosFentbw%3D
-
Lee, W., Lee, S.Y., Briber, R.M. & Rabin, O. Selfassembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater.21, 3424–429 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3424-3429
-
-
Lee, W.1
Lee, S.Y.2
Briber, R.M.3
Rabin, O.4
-
16
-
-
84884513276
-
Spatial deformation of nanocellulose hydrogel enhances SERS
-
COI: 1:CAS:528:DC%2BC3sXhsVyltrrK
-
Park, M., Chang, H., Jeong, D.H. & Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J.7, 234–41 (2013).
-
(2013)
BioChip J.
, vol.7
, pp. 234-241
-
-
Park, M.1
Chang, H.2
Jeong, D.H.3
Hyun, J.4
-
17
-
-
68749091175
-
Nano-patterned SERS substrate: Application for protein analysis vs. temperature
-
COI: 1:CAS:528:DC%2BD1MXltV2rtLg%3D
-
Das, G. et al. Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosens. Bioelectron. 24, 1693–699 (2009).
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 1693-1699
-
-
Das, G.1
-
18
-
-
84863011572
-
Nanoparticle–enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes
-
COI: 1:CAS:528:DC%2BC38XktVGmtQ%3D%3D
-
Kwon, M.J., Lee, J., Wark, A.W. & Lee, H.J. Nanoparticle–enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes. Anal. Chem.84, 1702–707 (2012).
-
(2012)
Anal. Chem.
, vol.84
, pp. 1702-1707
-
-
Kwon, M.J.1
Lee, J.2
Wark, A.W.3
Lee, H.J.4
-
19
-
-
84859760176
-
Single molecule detection from a largescale SERS-active Au79Ag21 substrate
-
COI: 1:CAS:528:DC%2BC38XhtVKktb8%3D
-
Liu, H.W. et al. Single molecule detection from a largescale SERS-active Au79Ag21 substrate. Sci. Rep-Uk.1, 112 (2011).
-
(2011)
Sci. Rep-Uk.
, vol.1
, pp. 112
-
-
Liu, H.W.1
-
20
-
-
84880448902
-
Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction
-
COI: 1:CAS:528:DC%2BC3sXhtFSisbnN
-
Li, L., Hutter, T., Steiner, U. & Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst138, 4574–578 (2013).
-
(2013)
Analyst
, vol.138
, pp. 4574-4578
-
-
Li, L.1
Hutter, T.2
Steiner, U.3
Mahajan, S.4
-
21
-
-
22844443112
-
Adaptive silver films for surfaceenhanced Raman spectroscopy of biomolecules
-
COI: 1:CAS:528:DC%2BD2MXntVantr4%3D
-
Drachev, V.P. et al. Adaptive silver films for surfaceenhanced Raman spectroscopy of biomolecules. J. Raman Spectrosc.36, 648–56 (2005).
-
(2005)
J. Raman Spectrosc.
, vol.36
, pp. 648-656
-
-
Drachev, V.P.1
-
22
-
-
34047254551
-
Hot spots in ag core-au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules
-
COI: 1:CAS:528:DC%2BD2sXitF2hu7c%3D
-
Kumar, G.V.P. et al. Hot spots in ag core-au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J. Phys. Chem. C111, 4388–392 (2007).
-
(2007)
J. Phys. Chem.
, vol.111
, pp. 4388-4392
-
-
Kumar, G.V.P.1
-
23
-
-
33751246487
-
Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy
-
COI: 1:CAS:528:DC%2BD28Xht1Cnsb7O
-
Dijkstra, R.J. et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. J. Neurosci. Meth.159, 43–0 (2007).
-
(2007)
J. Neurosci. Meth.
, vol.159
, pp. 43-50
-
-
Dijkstra, R.J.1
-
24
-
-
84866403636
-
New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid
-
Kayat, M. & Volkan, M. New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal. Chem.84, 7729–735 (2012).
-
(2012)
Anal. Chem.
, vol.84
, pp. 7729-7735
-
-
Kayat, M.1
Volkan, M.2
-
26
-
-
82555175813
-
In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days
-
COI: 1:CAS:528:DC%2BC3MXhtlaqsLvO
-
Ma, K. et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem.83, 9146–152 (2011).
-
(2011)
Anal. Chem.
, vol.83
, pp. 9146-9152
-
-
Ma, K.1
-
27
-
-
38049047244
-
In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags
-
COI: 1:CAS:528:DC%2BD1cXisFGmtQ%3D%3D
-
Qian, X.M. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol.26, 83–0 (2008).
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 83-90
-
-
Qian, X.M.1
-
28
-
-
77956919235
-
Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection
-
COI: 1:CAS:528:DC%2BC3cXht1Wlt73N
-
Maiti, K.K. et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron.26, 398–03 (2010).
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 398-403
-
-
Maiti, K.K.1
-
29
-
-
79959506183
-
Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection
-
COI: 1:CAS:528:DC%2BC3MXnvFSrur8%3D
-
Samanta, A. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Edit.50, 6089–092 (2011).
-
(2011)
Angew. Chem. Int. Edit.
, vol.50
, pp. 6089-6092
-
-
Samanta, A.1
-
30
-
-
84863919660
-
Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging
-
COI: 1:CAS:528:DC%2BC38XoslGitLc%3D
-
McQueenie, R. et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem.84, 5968–975 (2012).
-
(2012)
Anal. Chem.
, vol.84
, pp. 5968-5975
-
-
McQueenie, R.1
-
31
-
-
69349107458
-
Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy
-
COI: 1:CAS:528:DC%2BD1MXhtVKltLbF
-
Zavaleta, C.L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A.106, 13511–3516 (2009).
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13511-13516
-
-
Zavaleta, C.L.1
-
32
-
-
33744787335
-
Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory
-
COI: 1:CAS:528:DC%2BD28XjsFWnu7k%3D
-
Jensen, L. & Schatz, G.C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J. Phys. Chem. A 110, 5973–977 (2006).
-
(2006)
J. Phys. Chem.
, vol.110
, pp. 5973-5977
-
-
Jensen, L.1
Schatz, G.C.2
-
33
-
-
48449095998
-
Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy
-
Chou, I.H. et al. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano. Lett.8, 1729–735 (2008).
-
(2008)
Nano. Lett.
, vol.8
, pp. 1729-1735
-
-
Chou, I.H.1
|