-
1
-
-
0033539175
-
Internet: Diameter of the World-Wide Web
-
R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the World-Wide Web,” Nature, 401, 1999 pp. 130–131. doi:10.1038/43601.
-
(1999)
Nature
, vol.401
, pp. 130-131
-
-
Albert, R.1
Jeong, H.2
Barabási, A.-L.3
-
2
-
-
41149165188
-
Emergent Decision-Making in Biological Signal Transduction Networks
-
T. Helikar, J. Konvalina, J. Heidel, and J. A. Rogers, “Emergent Decision-Making in Biological Signal Transduction Networks,” Proceedings of the National Academy of Sciences, 105(6), 2008 pp. 1913–1918. doi:10.1073/pnas.0705088105.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, Issue.6
, pp. 1913-1918
-
-
Helikar, T.1
Konvalina, J.2
Heidel, J.3
Rogers, J.A.4
-
4
-
-
42749101137
-
Small-World Properties of the Indian Railway Network
-
P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, “Small-World Properties of the Indian Railway Network,” Physical Review E, 67(3), 2003 p. 036106. doi:10.1103/PhysRevE.67.036106.
-
(2003)
Physical Review
, vol.67
, Issue.3
, pp. 36106
-
-
Sen, P.1
Dasgupta, S.2
chatterjee, A.3
Sreeram, P.A.4
Mukherjee, G.5
Manna, S.S.6
-
6
-
-
84861785931
-
-
arxiv.org/abs/1111.4570
-
L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four Degrees of Separation.” arxiv.org/abs/1111.4570.
-
Four Degrees of Separation.
-
-
Backstrom, L.1
Boldi, P.2
Rosa, M.3
Ugander, J.4
Vigna, S.5
-
7
-
-
0002687371
-
The Small World Problem
-
S. Milgram, “The Small World Problem,” Psychology Today, 2, 1967 pp. 60–67.
-
(1967)
Psychology Today
, vol.2
, pp. 60-67
-
-
Milgram, S.1
-
8
-
-
0001504032
-
An Experimental Study of the Small World Problem
-
J. Travers and S. Milgram, “An Experimental Study of the Small World Problem,” Sociometry, 32(4), 1969 pp. 425–443.
-
(1969)
Sociometry
, vol.32
, Issue.4
, pp. 425-443
-
-
Travers, J.1
Milgram, S.2
-
9
-
-
0032482432
-
“Collective Dynamics of ‘Small-World’ Networks,” Nature
-
D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’ Networks,” Nature, 393, 1998 pp. 440–442. doi:10.1038/30918.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
11
-
-
33845676494
-
A Small-World Network Where All Nodes Have the Same Connectivity, with Application to the Dynamics of Boolean Interacting Automata
-
R. Serra, M. Villani, and L. Agostini, “A Small-World Network Where All Nodes Have the Same Connectivity, with Application to the Dynamics of Boolean Interacting Automata,” Complex Systems, 15(2), 2004 pp. 137–155. http://www.complex-systems.com/pdf/15-2-3.pdf.
-
(2004)
Complex Systems
, vol.15
, Issue.2
, pp. 137-155
-
-
Serra, R.1
Villani, M.2
Agostini, L.3
-
12
-
-
72649103451
-
Static and Dynamic Properties of Small-World Connection Topologies Based on Transit-Stub Networks
-
C. Aguirre, F. Corbacho, and R. Huerta, “Static and Dynamic Properties of Small-World Connection Topologies Based on Transit-Stub Networks,” Complex Systems, 14(1), 2003 pp. 1–28. http://www.complex-systems.com/pdf/14-1-1.pdf.
-
(2003)
Complex Systems
, vol.14
, Issue.1
, pp. 1-28
-
-
Aguirre, C.1
Corbacho, F.2
Huerta, R.3
-
13
-
-
0036013593
-
Statistical Mechanics of Complex Networks
-
R. Albert and A.-L. Barabási, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, 74(1), 2002 pp. 47–97. doi:10.1103/RevModPhys.74.47.
-
(2002)
Reviews of Modern Physics
, vol.74
, Issue.1
, pp. 47-97
-
-
Albert, R.1
Barabási, A.-L.2
-
17
-
-
0034633749
-
Classes of Small-World Networks
-
L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes of Small-World Networks,” Proceedings of the National Academy of Sciences, 97(21), 2000 pp. 11149–11152. doi:10.1073/pnas.200327197.
-
(2000)
Proceedings of the National Academy of Sciences
, vol.97
, Issue.21
, pp. 11149-11152
-
-
Amaral, L.A.N.1
Scala, A.2
Barthélémy, M.3
Stanley, H.E.4
-
18
-
-
79955610756
-
Multilevel Aggregation Methods for Small-World Graphs with Application to Random-Walk Ranking
-
H. De Sterck, V. E. Henson, and G. Sanders, “Multilevel Aggregation Methods for Small-World Graphs with Application to Random-Walk Ranking,” Computing and Informatics, 30(2), 2011 pp. 225–246.
-
(2011)
Computing and Informatics
, vol.30
, Issue.2
, pp. 225-246
-
-
De Sterck, H.1
Henson, V.E.2
Sanders, G.3
-
19
-
-
47849108625
-
The Mathematics of Networks
-
2nd ed, L. E. Blume and S. N. Durlauf, eds.), Basingstoke, UK: Palgrave Macmillan
-
M. E. J. Newman, “The Mathematics of Networks,” in The New Pal-grave Dictionary of Economics, 2nd ed. (L. E. Blume and S. N. Durlauf, eds.), Basingstoke, UK: Palgrave Macmillan, 2008 pp. 1–12.
-
(2008)
The New Pal-Grave Dictionary of Economics
, pp. 1-12
-
-
Newman, M.1
-
20
-
-
59549091350
-
Small-World Graphs: Characterization and Alternative Constructions
-
R. Cont and E. Tanimura, “Small-World Graphs: Characterization and Alternative Constructions,” Advances in Applied Probability, 40, 2008 pp. 939–965. doi:10.1239/aap/1231340159.
-
(2008)
Advances in Applied Probability
, vol.40
, pp. 939-965
-
-
Cont, R.1
Tanimura, E.2
-
21
-
-
0033196289
-
Networks, Dynamics, and the Small-World Phenomenon
-
D. J. Watts, “Networks, Dynamics, and the Small-World Phenomenon,” The American Journal of Sociology, 105(2), 1999 pp. 493–527.
-
(1999)
The American Journal of Sociology
, vol.105
, Issue.2
, pp. 493-527
-
-
Watts, D.J.1
-
22
-
-
77954826067
-
Networks: An Introduction
-
New York: Oxford University Press
-
M. E. J. Newman, Networks: An Introduction, New York: Oxford University Press, 2010.
-
(2010)
-
-
Newman, M.E.J.1
-
23
-
-
84921315882
-
-
Berkeley: New Riders
-
P. Adams, Grouped, Berkeley: New Riders, 2012.
-
(2012)
Grouped
-
-
Adams, P.1
-
26
-
-
84875379930
-
-
Release Version 7.10.0 (R2010a), Natick, MA: The MathWorks Inc
-
MATLAB, Release Version 7.10.0 (R2010a), Natick, MA: The MathWorks Inc., 2010.
-
(2010)
MATLAB
-
-
|