메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Methods for handling missing data

Author keywords

Bayesian inference; Hot deck imputation; Likelihood methods; Missing data; Multiple imputation

Indexed keywords


EID: 84921051638     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1093/acprof:oso/9780198528487.003.0007     Document Type: Chapter
Times cited : (3)

References (49)
  • 3
    • 0029584587 scopus 로고
    • A critical look at methods for handling missing covariates in epidemiologic regression analysis
    • Greenland S, Finkle WD (1995). A critical look at methods for handling missing covariates in epidemiologic regression analysis. American Journal of Epidemiology 142, 1255-1268.
    • (1995) American Journal of Epidemiology , vol.142 , pp. 1255-1268
    • Greenland, S.1    Finkle, W.D.2
  • 10
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer JL, Graham JW (2002). Missing data: our view of the state of the art. Psychological Methods 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 11
    • 0842285954 scopus 로고    scopus 로고
    • Have multilevel models been structural equation models all along?
    • Curran PJ (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research 38, 529-569.
    • (2003) Multivariate Behavioral Research , vol.38 , pp. 529-569
    • Curran, P.J.1
  • 13
    • 0031014353 scopus 로고    scopus 로고
    • Non-response models for the analysis of non-monotone ignorable missing data
    • Robins JM, Gill RD (1997). Non-response models for the analysis of non-monotone ignorable missing data. Statistics in Medicine 16, 39-56.
    • (1997) Statistics in Medicine , vol.16 , pp. 39-56
    • Robins, J.M.1    Gill, R.D.2
  • 14
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 16
    • 0000582079 scopus 로고
    • Data analysis using hot deck multiple imputation
    • Reilly MJ (1993). Data analysis using hot deck multiple imputation. Statistician 42, 307-313.
    • (1993) Statistician , vol.42 , pp. 307-313
    • Reilly, M.J.1
  • 17
    • 0031025827 scopus 로고    scopus 로고
    • The relationship between hot-deck multiple imputation and weighted likelihood
    • Reilly MJ, Pepe MS (1997). The relationship between hot-deck multiple imputation and weighted likelihood. Statistics in Medicine 16, 5-19.
    • (1997) Statistics in Medicine , vol.16 , pp. 5-19
    • Reilly, M.J.1    Pepe, M.S.2
  • 18
    • 0029584587 scopus 로고
    • A critical look at methods for handling missing covariates in epidemiologic regression analysis
    • Greenland S, Finkle WD (1995). A critical look at methods for handling missing covariates in epidemiologic regression analysis. American Journal of Epidemiology 142, 1255-1268.
    • (1995) American Journal of Epidemiology , vol.142 , pp. 1255-1268
    • Greenland, S.1    Finkle, W.D.2
  • 25
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: a data analyst's perspective
    • Schafer JL, Olsen MK (1998). Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behavioral Research 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 31
    • 0000601258 scopus 로고
    • On the variances of asymptotically normal estimators from complex surveys
    • Binder DA (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review 51, 279-292.
    • (1983) International Statistical Review , vol.51 , pp. 279-292
    • Binder, D.A.1
  • 32
    • 84950421496 scopus 로고
    • Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky A, Zhao LP (1995). Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 33
  • 34
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
    • Enders CK (2001). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods 6, 352-370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 35
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and continuous categorical data with missing values
    • Little RJA, Schluchter MD (1985). Maximum likelihood estimation for mixed continuous and continuous categorical data with missing values. Biometrika 72, 497-512.
    • (1985) Biometrika , vol.72 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.D.2
  • 36
    • 0033475401 scopus 로고    scopus 로고
    • Direct calculation of the information matrix via the EM algorithm
    • Oakes D (1999). Direct calculation of the information matrix via the EM algorithm. Journal of the Royal Statistical Society B 61, 479-482.
    • (1999) Journal of the Royal Statistical Society B , vol.61 , pp. 479-482
    • Oakes, D.1
  • 37
    • 1842715135 scopus 로고    scopus 로고
    • Likelihood-based methods for missing covariates in the Cox proportional hazards model
    • Herring AH, Ibrahim JG (2001). Likelihood-based methods for missing covariates in the Cox proportional hazards model. Journal of the American Statistical Association 96, 292-302.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 292-302
    • Herring, A.H.1    Ibrahim, J.G.2
  • 38
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of restrictive and inclusive missing data strategies
    • Collins LM, Schafer JL, Kam CM (2001). A comparison of restrictive and inclusive missing data strategies. Psychological Methods 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 39
    • 71849085936 scopus 로고    scopus 로고
    • Strategies for handling missing data in SEM: a user's perspective
    • In: Marcoulides GA, Moustaki I, ed, Lawrence Erlbaum, Mahwah, NJ
    • Wiggins RD, Sacker A (2002). Strategies for handling missing data in SEM: a user's perspective. In: Marcoulides GA, Moustaki I, ed. Latent variable and latent structure models. Lawrence Erlbaum, Mahwah, NJ, pp. 105-120.
    • (2002) Latent variable and latent structure models , pp. 105-120
    • Wiggins, R.D.1    Sacker, A.2
  • 40
    • 0041589601 scopus 로고    scopus 로고
    • The comparative efficiency of imputation for missing data in structural equation modeling
    • Olinsky A, Chen S, Harlow L (2003). The comparative efficiency of imputation for missing data in structural equation modeling. European Journal of Operational Research 151, 53-79.
    • (2003) European Journal of Operational Research , vol.151 , pp. 53-79
    • Olinsky, A.1    Chen, S.2    Harlow, L.3
  • 41
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input (with discussion)
    • Meng XL (1994). Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical Science 10, 538-573.
    • (1994) Statistical Science , vol.10 , pp. 538-573
    • Meng, X.L.1
  • 42
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer JL (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistic Neerlandica 57, 19-35.
    • (2003) Statistic Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 45
    • 0037198583 scopus 로고    scopus 로고
    • Prediction of survival and opportunistic infections in HIV-infected patients: a comparison of multiple imputation methods of incomplete CD4 counts
    • Molenberghs G, Williams PL, Lipsitz SR (2002). Prediction of survival and opportunistic infections in HIV-infected patients: a comparison of multiple imputation methods of incomplete CD4 counts. Statistics in Medicine 21, 1387-1408.
    • (2002) Statistics in Medicine , vol.21 , pp. 1387-1408
    • Molenberghs, G.1    Williams, P.L.2    Lipsitz, S.R.3
  • 46
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • Van Buuren S, Boshuizen HC, Knook DL (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 18, 681-694.
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 47
    • 0038716868 scopus 로고    scopus 로고
    • Bayesian nonparametric multiple imputation of partially observed data with ignorable nonresponse
    • Paddock SM (2002). Bayesian nonparametric multiple imputation of partially observed data with ignorable nonresponse. Biometrika 89, 529-538.
    • (2002) Biometrika , vol.89 , pp. 529-538
    • Paddock, S.M.1
  • 48
    • 0037470266 scopus 로고    scopus 로고
    • Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model
    • Demissie S, LaValley MP, Horton NJ, Glynn RJ, Cupples LA (2003). Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. Statistics in Medicine 22, 545-557.
    • (2003) Statistics in Medicine , vol.22 , pp. 545-557
    • Demissie, S.1    LaValley, M.P.2    Horton, N.J.3    Glynn, R.J.4    Cupples, L.A.5
  • 49
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: comparison of software packages for regression models with missing variables
    • Horton NJ, Lipsitz SR (2001). Multiple imputation in practice: comparison of software packages for regression models with missing variables. American Statistician 55, 244-254.
    • (2001) American Statistician , vol.55 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.