메뉴 건너뛰기




Volumn 8, Issue DEC, 2014, Pages

A systematic framework for functional connectivity measures

Author keywords

Evaluation framework; fMRI; Functional connectivity; Granger causality; Neural mass models

Indexed keywords

ANALYTIC METHOD; ARTICLE; CLINICAL ASSESSMENT; CLINICAL EVALUATION; CONCEPTUAL FRAMEWORK; ELECTROENCEPHALOGRAM; ELECTROENCEPHALOGRAPHY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HEMODYNAMIC PARAMETERS; NEUROLOGIC EXAMINATION; NONLINEAR SYSTEM; RADIOLOGICAL PARAMETERS; RECEIVER OPERATING CHARACTERISTIC; SIGNAL NOISE RATIO; TASK PERFORMANCE; TIME SERIES ANALYSIS;

EID: 84920618449     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2014.00405     Document Type: Article
Times cited : (185)

References (41)
  • 1
    • 33749337076 scopus 로고    scopus 로고
    • Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals
    • Ansari-Asl, K., Senhadji, L., Bellanger, J. J., and Wendling, F. (2006). Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys. Rev. E 74, 31916. doi: 10.1103/PhysRevE.74.031916
    • (2006) Phys. Rev. E , vol.74 , pp. 31916
    • Ansari-Asl, K.1    Senhadji, L.2    Bellanger, J.J.3    Wendling, F.4
  • 3
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: a new concept in neural structure determination
    • Baccalá, L., and Sameshima, K. (2001). Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463-474. doi: 10.1007/PL00007990
    • (2001) Biol. Cybern. , vol.84 , pp. 463-474
    • Baccalá, L.1    Sameshima, K.2
  • 4
    • 0032256736 scopus 로고    scopus 로고
    • Studying the interaction between brain structures via directed coherence and Granger causality
    • Baccalá, L., Sameshima, K., Ballester, G., Do Valle, A. C., and Timo-loria, C. (1998). Studying the interaction between brain structures via directed coherence and Granger causality. Appl. Signal Process. 5, 40-48. doi: 10.1007/s005290050005
    • (1998) Appl. Signal Process. , vol.5 , pp. 40-48
    • Baccalá, L.1    Sameshima, K.2    Ballester, G.3    Do Valle, A.C.4    Timo-loria, C.5
  • 5
    • 84889444756 scopus 로고    scopus 로고
    • Computer intensive testing for the influence between time series
    • eds B. Schelter, M. Winterhalder, and J. Timmer (Weinheim: Wiley-VCH)
    • Baccalá, L., Takahashi, D., and Sameshima, K. (2006). "Computer intensive testing for the influence between time series," in Handbook of Time Series Analysis, eds B. Schelter, M. Winterhalder, and J. Timmer (Weinheim: Wiley-VCH), 411.
    • (2006) Handbook of Time Series Analysis , pp. 411
    • Baccalá, L.1    Takahashi, D.2    Sameshima, K.3
  • 6
    • 71549116419 scopus 로고    scopus 로고
    • Granger causality and transfer entropy are equivalent for gaussian variables
    • Barnett, L., Barrett, A. B., and Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for gaussian variables. Phys. Rev. Lett. 103, 238701. doi: 10.1103/PhysRevLett.103.238701
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 238701
    • Barnett, L.1    Barrett, A.B.2    Seth, A.K.3
  • 7
    • 84859948255 scopus 로고    scopus 로고
    • The economy of brain network organization
    • Bullmore, E., and Sporns, O. (2012). The economy of brain network organization. Nat. Rev. Neurosci. 13, 336-349.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 336-349
    • Bullmore, E.1    Sporns, O.2
  • 8
    • 84858075323 scopus 로고    scopus 로고
    • On the spectral formulation of Granger causality
    • Chicharro, D. (2011). On the spectral formulation of Granger causality. Biol. Cybern. 105, 331-347. doi: 10.1007/s00422-011-0469-z
    • (2011) Biol. Cybern. , vol.105 , pp. 331-347
    • Chicharro, D.1
  • 9
    • 1242338933 scopus 로고    scopus 로고
    • Evaluation of different measures of functional connectivity using a neural mass model
    • David, O., Cosmelli, D., and Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21, 659-673. doi: 10.1016/j.neuroimage.2003.10.006
    • (2004) Neuroimage , vol.21 , pp. 659-673
    • David, O.1    Cosmelli, D.2    Friston, K.J.3
  • 10
    • 22144469412 scopus 로고    scopus 로고
    • The human brain is intrinsically organized into dynamic, anticorrelated functional networks
    • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673-9678. doi: 10.1073/pnas.0504136102
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9673-9678
    • Fox, M.D.1    Snyder, A.Z.2    Vincent, J.L.3    Corbetta, M.4    Van Essen, D.C.5    Raichle, M.E.6
  • 11
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56-78. doi: 10.1002/hbm.460020107
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 12
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. Neuroimage 19, 1273-1302. doi: 10.1016/S1053-8119(03)00202-7
    • (2003) Neuroimage , vol.19 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 13
    • 84900343987 scopus 로고    scopus 로고
    • A DCM for resting state fMRI
    • Friston, K. J., Kahan, J., Biswal, B., and Razi, A. (2014). A DCM for resting state fMRI. Neuroimage 94, 396-407. doi: 10.1016/j.neuroimage.2013.12.009
    • (2014) Neuroimage , vol.94 , pp. 396-407
    • Friston, K.J.1    Kahan, J.2    Biswal, B.3    Razi, A.4
  • 14
    • 84894912254 scopus 로고
    • Measurement of linear dependence and feedback between multiple time series
    • Geweke, J. F. (1982). Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304-313. doi: 10.1080/01621459.1982.10477803
    • (1982) J. Am. Stat. Assoc. , vol.77 , pp. 304-313
    • Geweke, J.F.1
  • 15
    • 84950949120 scopus 로고
    • Measures of conditional linear dependence and feedback between time series
    • Geweke, J. F. (1984). Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 79, 907-915. doi: 10.1080/01621459.1984.10477110
    • (1984) J. Am. Stat. Assoc. , vol.79 , pp. 907-915
    • Geweke, J.F.1
  • 16
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 37, 424-438. doi: 10.2307/1912791
    • (1969) Econom. J. Econom. Soc. , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 18
    • 12744269470 scopus 로고    scopus 로고
    • Application of the cross wavelet transform and wavelet coherence to geophysical time series
    • Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561-566. doi: 10.5194/npg-11-561-2004
    • (2004) Nonlinear Process. Geophys. , vol.11 , pp. 561-566
    • Grinsted, A.1    Moore, J.C.2    Jevrejeva, S.3
  • 19
    • 0002591468 scopus 로고
    • A two-dimensional mapping with a strange attractor
    • Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69-77. doi: 10.1007/BF01608556
    • (1976) Commun. Math. Phys. , vol.50 , pp. 69-77
    • Hénon, M.1
  • 20
    • 84977302504 scopus 로고
    • The application of the discrete Fourier transform in the estimation of power spectra, coherence, and bispectra of geophysical data
    • Hinich, M. J., and Clay, C. S. (1968). The application of the discrete Fourier transform in the estimation of power spectra, coherence, and bispectra of geophysical data. Rev. Geophys. 6, 347-363. doi: 10.1029/RG006i003p00347
    • (1968) Rev. Geophys. , vol.6 , pp. 347-363
    • Hinich, M.J.1    Clay, C.S.2
  • 21
    • 0029374946 scopus 로고
    • Biological Cybernetics in a mathematical model of coupled cortical columns
    • Jansen, B. H., and Rit, V. G. (1995). Biological Cybernetics in a mathematical model of coupled cortical columns. Biol. Cybern. 366, 357-366.
    • (1995) Biol. Cybern. , vol.366 , pp. 357-366
    • Jansen, B.H.1    Rit, V.G.2
  • 22
    • 0035433274 scopus 로고    scopus 로고
    • Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance
    • Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145-157. doi: 10.1007/s004220000235
    • (2001) Biol. Cybern. , vol.85 , pp. 145-157
    • Kaminski, M.1    Ding, M.2    Truccolo, W.A.3    Bressler, S.L.4
  • 23
    • 0025987253 scopus 로고
    • A new method of the description of the information flow in the brain structures
    • Kaminski, M. J., and Blinowska, K. J. (1991). A new method of the description of the information flow in the brain structures. Biol. Cybern. 65, 203-210. doi: 10.1007/BF00198091
    • (1991) Biol. Cybern. , vol.65 , pp. 203-210
    • Kaminski, M.J.1    Blinowska, K.J.2
  • 24
    • 20544440613 scopus 로고    scopus 로고
    • Causal influence: advances in neurosignal analysis
    • Kaminski, M., and Liang, H. (2005). Causal influence: advances in neurosignal analysis. Crit. Rev. Biomed. Eng. 33, 347. doi: 10.1615/CritRevBiomedEng.v33.i4.20
    • (2005) Crit. Rev. Biomed. Eng. , vol.33 , pp. 347
    • Kaminski, M.1    Liang, H.2
  • 25
    • 0037563249 scopus 로고    scopus 로고
    • Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method
    • Korzeniewska, A., Mañczak, M., Kamiñski, M., Blinowska, K. J., and Kasicki, S. (2003). Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J. Neurosci. Methods 125, 195-207. doi: 10.1016/S0165-0270(03)00052-9
    • (2003) J. Neurosci. Methods , vol.125 , pp. 195-207
    • Korzeniewska, A.1    Mañczak, M.2    Kamiñski, M.3    Blinowska, K.J.4    Kasicki, S.5
  • 26
    • 0024954278 scopus 로고
    • Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts.
    • Lopes da Silva, F., Pijn, J. P., and Boeijinga, P. (1989). Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topogr. 2, 9-18. doi: 10.1007/BF01128839
    • (1989) Brain Topogr , vol.2 , pp. 9-18
    • da Silva, F.L.1    Pijn, J.P.2    Boeijinga, P.3
  • 27
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • Mclntosh, A. R., and Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2-22. doi: 10.1002/hbm.460020104
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 2-22
    • Mclntosh, A.R.1    Gonzalez-Lima, F.2
  • 28
    • 84876519511 scopus 로고    scopus 로고
    • Neural masses and fields in dynamic causal modeling.
    • Moran, R., Pinotsis, D., and Friston, K. (2013). Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7:57. doi: 10.3389/fncom.2013.00057
    • (2013) Front. Comput. Neurosci , vol.7 , pp. 57
    • Moran, R.1    Pinotsis, D.2    Friston, K.3
  • 29
    • 17344381221 scopus 로고    scopus 로고
    • Synchronization as adjustment of information rates: detection from bivariate time series.
    • Paluš, M., Komárek, V., Hrnèíø, Z., and Štìrbová, K. (2001). Synchronization as adjustment of information rates: detection from bivariate time series. Phys. Rev. E63, 46211. doi: 10.1103/PhysRevE.63.046211
    • (2001) Phys. Rev. , vol.E63 , pp. 46211
    • Paluš, M.1    Komárek, V.2    Hrnèíø, Z.3    Štìrbová, K.4
  • 30
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinear multivariate analysis of neurophysiological signals
    • Pereda, E., Quiroga, R. Q., and Bhattacharya, J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1-37. doi: 10.1016/j.pneurobio.2005.10.003
    • (2005) Prog. Neurobiol. , vol.77 , pp. 1-37
    • Pereda, E.1    Quiroga, R.Q.2    Bhattacharya, J.3
  • 31
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: a case study on electroencephalographic signals
    • Quiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 41903. doi: 10.1103/PhysRevE.65.041903
    • (2002) Phys. Rev. E , vol.65 , pp. 41903
    • Quiroga, R.Q.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 33
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • Rodgers, J. L., and Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 59-66. doi: 10.2307/2685263
    • (1988) Am. Stat. , vol.42 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 34
    • 84985456277 scopus 로고
    • Continuous chaos: four prototype equations
    • Rössler, O. E. (1979). Continuous chaos: four prototype equations. Ann. N.Y. Acad. Sci. 316, 376-392. doi: 10.1111/j.1749-6632.1979.tb29482.x
    • (1979) Ann. N.Y. Acad. Sci. , vol.316 , pp. 376-392
    • Rössler, O.E.1
  • 35
    • 12944275674 scopus 로고    scopus 로고
    • Measuring information transfer
    • Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461-464. doi: 10.1103/PhysRevLett.85.461
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 461-464
    • Schreiber, T.1
  • 36
    • 74149089224 scopus 로고    scopus 로고
    • A MATLAB toolbox for Granger causal connectivity analysis
    • Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods 186, 262-273. doi: 10.1016/j.jneumeth.2009.11.020
    • (2010) J. Neurosci. Methods , vol.186 , pp. 262-273
    • Seth, A.K.1
  • 39
    • 69549116257 scopus 로고    scopus 로고
    • From EEG signals to brain connectivity: a model-based evaluation of interdependence measures
    • Wendling, F., and Ansari-Asl, K. (2009). From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J. Neurosci. Methods 183, 9-18. doi: 10.1016/j.jneumeth.2009.04.021
    • (2009) J. Neurosci. Methods , vol.183 , pp. 9-18
    • Wendling, F.1    Ansari-Asl, K.2
  • 40
    • 0034976215 scopus 로고    scopus 로고
    • Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG
    • Wendling, F., Bartolomei, F., Bellanger, J. J., and Chauvel, P. (2001). Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin. Neurophysiol. 112, 1201-1218. doi: 10.1016/S1388-2457(01)00547-8
    • (2001) Clin. Neurophysiol. , vol.112 , pp. 1201-1218
    • Wendling, F.1    Bartolomei, F.2    Bellanger, J.J.3    Chauvel, P.4
  • 41
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
    • Zweig, M., and Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561-577.
    • (1993) Clin. Chem. , vol.39 , pp. 561-577
    • Zweig, M.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.