-
3
-
-
9444236233
-
Ranking Interesting Subspaces for Clustering High Dimensional Data
-
K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka, "Ranking Interesting Subspaces for Clustering High Dimensional Data," Proc. Seventh European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 241-252, 2003.
-
(2003)
Proc. Seventh European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 241-252
-
-
Kailing, K.1
Kriegel, H.-P.2
Kröger, P.3
Wanka, S.4
-
4
-
-
2942588997
-
Density-Connected Subspace Clustering for High-Dimensional Data
-
K. Kailing, H.-P. Kriegel, and P. Kröger, "Density-Connected Subspace Clustering for High-Dimensional Data," Proc. Fourth SIAM Int'l Conf. Data Mining (SDM), pp. 246-257, 2004.
-
(2004)
Proc. Fourth SIAM Int'l Conf. Data Mining (SDM)
, pp. 246-257
-
-
Kailing, K.1
Kriegel, H.-P.2
Kröger, P.3
-
5
-
-
84865086248
-
Evaluating Clustering in Subspace Projections of High Dimensional Data
-
E. Müller, S. Günnemann, I. Assent, and T. Seidl, "Evaluating Clustering in Subspace Projections of High Dimensional Data," Proc. VLDB Endowment, vol. 2, pp. 1270-1281, 2009.
-
(2009)
Proc. VLDB Endowment
, vol.2
, pp. 1270-1281
-
-
Müller, E.1
Günnemann, S.2
Assent, I.3
Seidl, T.4
-
6
-
-
84949479246
-
On the Surprising Behavior of Distance Metrics in High Dimensional Spaces
-
C.C. Aggarwal, A. Hinneburg, and D.A. Keim, "On the Surprising Behavior of Distance Metrics in High Dimensional Spaces," Proc. Eighth Int'l Conf. Database Theory (ICDT), pp. 420-434, 2001.
-
(2001)
Proc. Eighth Int'l Conf. Database Theory (ICDT)
, pp. 420-434
-
-
Aggarwal, C.C.1
Hinneburg, A.2
Keim, D.A.3
-
7
-
-
34249788454
-
The Concentration of Fractional Distances
-
July
-
D. François, V. Wertz, and M. Verleysen, "The Concentration of Fractional Distances," IEEE Trans. Knowledge and Data Eng., vol. 19, no. 7, pp. 873-886, July 2007.
-
(2007)
IEEE Trans. Knowledge and Data Eng
, vol.19
, Issue.7
, pp. 873-886
-
-
François, D.1
Wertz, V.2
Verleysen, M.3
-
8
-
-
67649105393
-
When Is 'Nearest Neighbour' Meaningful: A Converse Theorem and Implications
-
R.J. Durrant and A. Kabán, "When Is 'Nearest Neighbour' Meaningful: A Converse Theorem and Implications," J. Complexity, vol. 25, no. 4, pp. 385-397, 2009.
-
(2009)
J. Complexity
, vol.25
, Issue.4
, pp. 385-397
-
-
Durrant, R.J.1
Kabán, A.2
-
9
-
-
81955161252
-
Non-Parametric Detection of Meaningless Distances in High Dimensional Data
-
A. Kabán, "Non-Parametric Detection of Meaningless Distances in High Dimensional Data," Statistics and Computing, vol. 22, no. 2, pp. 375-385, 2012.
-
(2012)
Statistics and Computing
, vol.22
, Issue.2
, pp. 375-385
-
-
Kabán, A.1
-
10
-
-
77649271674
-
Two Graph-Based Algorithms for State-of-the-Art WSD
-
E. Agirre, D. Martínez, O.L. de Lacalle, and A. Soroa, "Two Graph-Based Algorithms for State-of-the-Art WSD," Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), pp. 585-593, 2006.
-
(2006)
Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP)
, pp. 585-593
-
-
Agirre, E.1
Martínez, D.2
De Lacalle, O.L.3
Soroa, A.4
-
11
-
-
77957726465
-
Examination of the Relationship between Essential Genes in PPI Network and Hub Proteins in Reverse Nearest Neighbor Topology
-
K. Ning, H. Ng, S. Srihari, H. Leong, and A. Nesvizhskii, "Examination of the Relationship between Essential Genes in PPI Network and Hub Proteins in Reverse Nearest Neighbor Topology," BMC Bioinformatics, vol. 11, pp. 1-14, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 1-14
-
-
Ning, K.1
Ng, H.2
Srihari, S.3
Leong, H.4
Nesvizhskii, A.5
-
13
-
-
12244256379
-
Kernel k-Means: Spectral Clustering and Normalized Cuts
-
I.S. Dhillon, Y. Guan, and B. Kulis, "Kernel k-Means: Spectral Clustering and Normalized Cuts," Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 551-556, 2004.
-
(2004)
Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining
, pp. 551-556
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
14
-
-
79957933406
-
Knn Density-Based Clustering for High Dimensional Multispectral Images
-
T.N. Tran, R. Wehrens, and L.M.C. Buydens, "Knn Density-Based Clustering for High Dimensional Multispectral Images," Proc. Second GRSS/ISPRS Joint Workshop Remote Sensing and Data Fusion over Urban Areas, pp. 147-151, 2003.
-
(2003)
Proc. Second GRSS/ISPRS Joint Workshop Remote Sensing and Data Fusion over Urban Areas
, pp. 147-151
-
-
Tran, T.N.1
Wehrens, R.2
Buydens, L.M.C.3
-
16
-
-
33750814404
-
Neighbor Number, Valley Seeking and Clustering
-
C. Zhang, X. Zhang, M.Q. Zhang, and Y. Li, "Neighbor Number, Valley Seeking and Clustering," Pattern Recognition Letters, vol. 28, no. 2, pp. 173-180, 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.2
, pp. 173-180
-
-
Zhang, C.1
Zhang, X.2
Zhang, M.Q.3
Li, Y.4
-
18
-
-
2442514312
-
K-Nearest-Neighbor Consistency in Data Clustering: Incorporating Local Information into Global Optimization
-
C. Ding and X. He, "K-Nearest-Neighbor Consistency in Data Clustering: Incorporating Local Information into Global Optimization," Proc. ACM Symp. Applied Computing (SAC), pp. 584-589, 2004.
-
(2004)
Proc. ACM Symp. Applied Computing (SAC)
, pp. 584-589
-
-
Ding, C.1
He, X.2
-
19
-
-
77957173375
-
Fast Agglomerative Clustering Using Information of k-Nearest Neighbors
-
C.-T. Chang, J.Z.C. Lai, and M.D. Jeng, "Fast Agglomerative Clustering Using Information of k-Nearest Neighbors," Pattern Recognition, vol. 43, no. 12, pp. 3958-3968, 2010.
-
(2010)
Pattern Recognition
, vol.43
, Issue.12
, pp. 3958-3968
-
-
Chang, C.-T.1
Lai, J.Z.C.2
Jeng, M.D.3
-
20
-
-
80052314494
-
Hubness-Based Fuzzy Measures for High-Dimensional k- Nearest Neighbor Classification
-
N. Tomašev, M. Radovanović, D. Mladenić, and M. Ivanović, "Hubness-Based Fuzzy Measures for High-Dimensional k- Nearest Neighbor Classification," Proc. Seventh Int'l Conf. Machine Learning and Data Mining (MLDM), pp. 16-30, 2011.
-
(2011)
Proc. Seventh Int'l Conf. Machine Learning and Data Mining (MLDM)
, pp. 16-30
-
-
Tomašev, N.1
Radovanović, M.2
Mladenić, D.3
Ivanović, M.4
-
21
-
-
83055186753
-
A Probabilistic Approach to Nearest-Neighbor Classification: Naive Hubness Bayesian kNN
-
N. Tomašev, M. Radovanović, D. Mladenić, and M. Ivanović, "A Probabilistic Approach to Nearest-Neighbor Classification: Naive Hubness Bayesian kNN," Proc. 20th ACM Int'l Conf. Information and Knowledge Management (CIKM), pp. 2173-2176, 2011.
-
(2011)
Proc. 20th ACM Int'l Conf. Information and Knowledge Management (CIKM)
, pp. 2173-2176
-
-
Tomašev, N.1
Radovanović, M.2
Mladenić, D.3
Ivanović, M.4
-
22
-
-
84879888269
-
Time-Series Classification in Many Intrinsic Dimensions
-
M. Radovanović, A. Nanopoulos, and M. Ivanović, "Time-Series Classification in Many Intrinsic Dimensions," Proc. 10th SIAM Int'l Conf. Data Mining (SDM), pp. 677-688, 2010.
-
(2010)
Proc. 10th SIAM Int'l Conf. Data Mining (SDM)
, pp. 677-688
-
-
Radovanović, M.1
Nanopoulos, A.2
Ivanović, M.3
-
23
-
-
78649417385
-
Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data
-
M. Radovanović, A. Nanopoulos, and M. Ivanović, "Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data," J. Machine Learning Research, vol. 11, pp. 2487-2531, 2010.
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 2487-2531
-
-
Radovanović, M.1
Nanopoulos, A.2
Ivanović, M.3
-
24
-
-
84865237950
-
Nearest Neighbor Voting in High Dimensional Data: Learning from Past Occurrences
-
N. Tomašev and D. Mladenić, "Nearest Neighbor Voting in High Dimensional Data: Learning from Past Occurrences," Computer Science and Information Systems, vol. 9, no. 2, pp. 691-712, 2012.
-
(2012)
Computer Science and Information Systems
, vol.9
, Issue.2
, pp. 691-712
-
-
Tomašev, N.1
Mladenić, D.2
-
25
-
-
80755189587
-
The Influence of Hubness on Nearest-Neighbor Methods in Object Recognition
-
N. Tomašev, R. Brehar, D. Mladenić, and S. Nedevschi, "The Influence of Hubness on Nearest-Neighbor Methods in Object Recognition," Proc. IEEE Seventh Int'l Conf. Intelligent Computer Comm. and Processing (ICCP), pp. 367-374, 2011.
-
(2011)
Proc. IEEE Seventh Int'l Conf. Intelligent Computer Comm. and Processing (ICCP)
, pp. 367-374
-
-
Tomašev, N.1
Brehar, R.2
Mladenić, D.3
Nedevschi, S.4
-
26
-
-
79957951964
-
INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification
-
K. Buza, A. Nanopoulos, and L. Schmidt-Thieme, "INSIGHT: Efficient and Effective Instance Selection for Time-Series Classification," Proc. 15th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD), Part II, pp. 149-160, 2011.
-
(2011)
Proc. 15th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD) Part II
, pp. 149-160
-
-
Buza, K.1
Nanopoulos, A.2
Schmidt-Thieme, L.3
-
28
-
-
77956037491
-
On the Existence of Obstinate Results in Vector Space Models
-
M. Radovanović, A. Nanopoulos, and M. Ivanović, "On the Existence of Obstinate Results in Vector Space Models," Proc. 33rd Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, pp. 186-193, 2010.
-
(2010)
Proc. 33rd Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval
, pp. 186-193
-
-
Radovanović, M.1
Nanopoulos, A.2
Ivanović, M.3
-
31
-
-
84869160151
-
Local and Global Scaling Reduce Hubs in Space
-
D. Schnitzer, A. Flexer, M. Schedl, and G. Widmer, "Local and Global Scaling Reduce Hubs in Space," J. Machine Learning Research, vol. 13, pp. 2871-2902, 2012.
-
(2012)
J. Machine Learning Research
, vol.13
, pp. 2871-2902
-
-
Schnitzer, D.1
Flexer, A.2
Schedl, M.3
Widmer, G.4
-
33
-
-
70449440398
-
Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection
-
J. Chen, H. Fang, and Y. Saad, "Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection," J. Machine Learning Research, vol. 10, pp. 1989-2012, 2009.
-
(2009)
J. Machine Learning Research
, vol.10
, pp. 1989-2012
-
-
Chen, J.1
Fang, H.2
Saad, Y.3
-
34
-
-
84863752005
-
Bayesian Locality Sensitive Hashing for Fast Similarity Search
-
V. Satuluri and S. Parthasarathy, "Bayesian Locality Sensitive Hashing for Fast Similarity Search," Proc. VLDB Endowment, vol. 5, no. 5, pp. 430-441, 2012.
-
(2012)
Proc. VLDB Endowment
, vol.5
, Issue.5
, pp. 430-441
-
-
Satuluri, V.1
Parthasarathy, S.2
-
37
-
-
22044455069
-
Density-Based Clustering in Spatial Databases: The Algorithm Gdbscan and Its Applications
-
J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, "Density-Based Clustering in Spatial Databases: The Algorithm Gdbscan and Its Applications," Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169-194, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.-P.3
Xu, X.4
-
38
-
-
79957951698
-
The Role of Hubness in Clustering High-Dimensional Data
-
N. Tomašev, M. Radovanović, D. Mladenić, and M. Ivanović, "The Role of Hubness in Clustering High-Dimensional Data," Proc. 15th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD), Part I, pp. 183-195, 2011.
-
(2011)
Proc. 15th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD) Part i
, pp. 183-195
-
-
Tomašev, N.1
Radovanović, M.2
Mladenić, D.3
Ivanović, M.4
-
40
-
-
0033284915
-
Object Recognition from Local Scale-Invariant Features
-
D. Lowe, "Object Recognition from Local Scale-Invariant Features," Proc. IEEE Seventh Int'l Conf. Computer Vision (ICCV), vol. 2, pp. 1150-1157, 1999.
-
(1999)
Proc. IEEE Seventh Int'l Conf. Computer Vision (ICCV)
, vol.2
, pp. 1150-1157
-
-
Lowe, D.1
|