메뉴 건너뛰기




Volumn 23, Issue 10, 2014, Pages 3762-3769

Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

Author keywords

additive manufacturing; bioceramic; biomaterial; scaffold; sintering; tissue engineering

Indexed keywords

3D PRINTERS; AFTER-HEAT TREATMENT; BENDING STRENGTH; BIOCERAMICS; BIOCOMPATIBILITY; BIOMATERIALS; BIOMECHANICS; BONE; CELL ADHESION; COMPRESSIVE STRENGTH; FABRICATION; LASER HEATING; PORE SIZE; SCAFFOLDS; SELECTIVE LASER SINTERING; SINTERING; SOLS; SURFACE ROUGHNESS; TISSUE; TISSUE ENGINEERING;

EID: 84920260101     PISSN: 10599495     EISSN: 15441024     Source Type: Journal    
DOI: 10.1007/s11665-014-1142-1     Document Type: Article
Times cited : (22)

References (37)
  • 1
    • 17844400927 scopus 로고    scopus 로고
    • Review: Porosity of 3D Biomaterial Scaffolds and Osteogenesis
    • V. Karageorgiou and D. Kaplan, Review: Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26, p 5474–5491
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 2
    • 68149181057 scopus 로고    scopus 로고
    • Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility
    • J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29, p 2195–2202
    • (2009) Mater. Sci. Eng. C , vol.29 , pp. 2195-2202
    • Tercero, J.E.1    Namin, S.2    Lahiri, D.3    Balani, K.4    Tsoukias, N.5    Agarwal, A.6
  • 4
    • 73249114720 scopus 로고    scopus 로고
    • Bioceramics of Calcium Orthophosphates
    • S.V. Dorozhkin, Bioceramics of Calcium Orthophosphates, Biomaterials, 2010, 31, p 1465–1485
    • (2010) Biomaterials , vol.31 , pp. 1465-1485
    • Dorozhkin, S.V.1
  • 6
    • 84869019947 scopus 로고    scopus 로고
    • A Comparative Biomechanical Study of Bone Ingrowth in Two Porous Hydroxyapatite Bioceramics
    • L.M. Ren, M. Todo, T. Arahira, H. Yoshikawa, and A. Myoui, A Comparative Biomechanical Study of Bone Ingrowth in Two Porous Hydroxyapatite Bioceramics, Appl. Surf. Sci., 2012, 262, p 81–88
    • (2012) Appl. Surf. Sci , vol.262 , pp. 81-88
    • Ren, L.M.1    Todo, M.2    Arahira, T.3    Yoshikawa, H.4    Myoui, A.5
  • 7
    • 33644789527 scopus 로고    scopus 로고
    • Role of Scaffold Internal Structure on In Vivo Bone Formation in Macroporous Calcium Phosphate Bioceramics
    • M. Mastrogiacomo, S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda, and R. Quarto, Role of Scaffold Internal Structure on In Vivo Bone Formation in Macroporous Calcium Phosphate Bioceramics, Biomaterials, 2006, 27, p 3230–3237
    • (2006) Biomaterials , vol.27 , pp. 3230-3237
    • Mastrogiacomo, M.1    Scaglione, S.2    Martinetti, R.3    Dolcini, L.4    Beltrame, F.5    Cancedda, R.6    Quarto, R.7
  • 8
    • 33646358716 scopus 로고    scopus 로고
    • Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies
    • R. Murugan and S. Ramakrishna, Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies, Tissue Eng., 2006, 12, p 435–447
    • (2006) Tissue Eng , vol.12 , pp. 435-447
    • Murugan, R.1    Ramakrishna, S.2
  • 9
    • 84857560579 scopus 로고    scopus 로고
    • Three-Dimensional Registration of Tomography Data for Quantification in Biomaterials Science
    • B. Müller, H. Deyhle, S. Lang, G. Schulz, T. Bormann, F.C. Fierz, and S.E. Hieber, Three-Dimensional Registration of Tomography Data for Quantification in Biomaterials Science, Int. J. Mater. Res., 2012, 103, p 242–249
    • (2012) Int. J. Mater. Res , vol.103 , pp. 242-249
    • Müller, B.1    Deyhle, H.2    Lang, S.3    Schulz, G.4    Bormann, T.5    Fierz, F.C.6    Hieber, S.E.7
  • 10
    • 84866278002 scopus 로고    scopus 로고
    • A Study on the Fabrication Method of Removable Partial Denture Framework by Computer-Aided Design and Rapid Prototyping
    • J. Wu, X. Wang, X. Zhao, C. Zhang, and B. Gao, A Study on the Fabrication Method of Removable Partial Denture Framework by Computer-Aided Design and Rapid Prototyping, Rapid Prototyp. J., 2012, 18, p 318–323
    • (2012) Rapid Prototyp. J , vol.18 , pp. 318-323
    • Wu, J.1    Wang, X.2    Zhao, X.3    Zhang, C.4    Gao, B.5
  • 11
    • 84876945658 scopus 로고    scopus 로고
    • Synthesis of Bioceramic Scaffolds for Bone Tissue Engineering by Rapid Prototyping Technique
    • F.H. Liu, Synthesis of Bioceramic Scaffolds for Bone Tissue Engineering by Rapid Prototyping Technique, J. Sol-Gel. Sci. Technol., 2012, 64, p 704–710
    • (2012) J. Sol-Gel. Sci. Technol , vol.64 , pp. 704-710
    • Liu, F.H.1
  • 12
    • 84862869528 scopus 로고    scopus 로고
    • A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering
    • T. Billiet, M. Vandenhaute, J. Schelfhout, S.V. Vlierberghe, and P. Dubruel, A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering, Biomaterials, 2012, 33, p 6020–6041
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Vlierberghe, S.V.4    Dubruel, P.5
  • 13
    • 84864411903 scopus 로고    scopus 로고
    • Fabrication, Mechanical and In Vivo Performance of Polycaprolactone/Tricalcium Phosphate Composite Scaffolds
    • S. Lohfeld, S. Cahill, and V. Barron, Fabrication, Mechanical and In Vivo Performance of Polycaprolactone/Tricalcium Phosphate Composite Scaffolds, Acta Biomater., 2012, 8, p 3446–3456
    • (2012) Acta Biomater , vol.8 , pp. 3446-3456
    • Lohfeld, S.1    Cahill, S.2    Barron, V.3
  • 14
    • 84863214443 scopus 로고    scopus 로고
    • Micromechanical Finite-Element Modeling and Experimental Characterization of the Compressive Mechanical Properties of Polycaprolactone-Hydroxyapatite Composite Scaffolds Prepared by Selective Laser Sintering for Bone Tissue Engineering
    • S. Eshraghi and S. Das, Micromechanical Finite-Element Modeling and Experimental Characterization of the Compressive Mechanical Properties of Polycaprolactone-Hydroxyapatite Composite Scaffolds Prepared by Selective Laser Sintering for Bone Tissue Engineering, Acta Biomater., 2012, 8, p 3138–3143
    • (2012) Acta Biomater , vol.8 , pp. 3138-3143
    • Eshraghi, S.1    Das, S.2
  • 15
    • 84866007931 scopus 로고    scopus 로고
    • Interaction of Cell Culture with Composition Effects on the Mechanical Properties of Polycaprolactone-Hydroxyapatite Scaffolds Fabricated Via Selective Laser Sintering
    • S. Eosoly, N.E. Vrana, S. Lohfeld, M. Hindie, and L. Looney, Interaction of Cell Culture with Composition Effects on the Mechanical Properties of Polycaprolactone-Hydroxyapatite Scaffolds Fabricated Via Selective Laser Sintering, Mater. Sci. Eng. C, 2012, 32, p 2250–2257
    • (2012) Mater. Sci. Eng. C , vol.32 , pp. 2250-2257
    • Eosoly, S.1    Vrana, N.E.2    Lohfeld, S.3    Hindie, M.4    Looney, L.5
  • 16
    • 79958287550 scopus 로고    scopus 로고
    • Optimized Fabrication of Ca-P/PHBV Nanocomposite Scaffolds Via Selective Laser Sintering for Bone Tissue Engineering
    • B. Duan, W.L. Cheung, and M. Wang, Optimized Fabrication of Ca-P/PHBV Nanocomposite Scaffolds Via Selective Laser Sintering for Bone Tissue Engineering, Biofabrication, 2011, 3, p 1
    • (2011) Biofabrication , vol.3 , pp. 1
    • Duan, B.1    Cheung, W.L.2    Wang, M.3
  • 17
    • 82055184127 scopus 로고    scopus 로고
    • Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering Using Indirect Selective Laser Sintering
    • K.C.R. Kolan, M.C. Leu, and G.E. Hilmas, Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering Using Indirect Selective Laser Sintering, Biofabrication, 2011, 3, p 2
    • (2011) Biofabrication , vol.3 , pp. 2
    • Kolan, K.C.R.1    Leu, M.C.2    Hilmas, G.E.3
  • 18
    • 79959242988 scopus 로고    scopus 로고
    • Structure and Properties of Nano-Hydroxypatite Scaffolds for Bone Tissue Engineering with a Selective Laser Sintering System
    • C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng, Structure and Properties of Nano-Hydroxypatite Scaffolds for Bone Tissue Engineering with a Selective Laser Sintering System, Nanotechnology, 2011, 22, p 28
    • (2011) Nanotechnology , vol.22 , pp. 28
    • Shuai, C.1    Gao, C.2    Nie, Y.3    Hu, H.4    Zhou, Y.5    Peng, S.6
  • 19
    • 84863387936 scopus 로고    scopus 로고
    • Selective Laser Sintering of a Hydroxyapatite Silica Scaffold on Cultured MG63 Osteoblasts In Vitro
    • F.H. Liu, Y.K. Shen, and J.L. Lee, Selective Laser Sintering of a Hydroxyapatite Silica Scaffold on Cultured MG63 Osteoblasts In Vitro, Int. J. Precis. Eng. Manuf., 2012, 13, p 439–444
    • (2012) Int. J. Precis. Eng. Manuf , vol.13 , pp. 439-444
    • Liu, F.H.1    Shen, Y.K.2    Lee, J.L.3
  • 20
    • 77956612508 scopus 로고    scopus 로고
    • Fabrication Inner Complex Ceramic Part by Selective Laser Gelling
    • F.H. Liu and Y.S. Liao, Fabrication Inner Complex Ceramic Part by Selective Laser Gelling, J. Eur. Ceram. Soc., 2010, 30, p 3283–3289
    • (2010) J. Eur. Ceram. Soc , vol.30 , pp. 3283-3289
    • Liu, F.H.1    Liao, Y.S.2
  • 21
    • 0034765279 scopus 로고    scopus 로고
    • Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition
    • J. Zeltinger, Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition, Tissue Eng., 2001, 7, p 557–572
    • (2001) Tissue Eng , vol.7 , pp. 557-572
    • Zeltinger, J.1
  • 22
    • 84856170978 scopus 로고    scopus 로고
    • Osteoblast Behavior In Vitro in Porous Calcium Phosphate Composite Scaffolds, Surface Activated with a Cell Adhesive Plasma Polymer Layer
    • J.B. Nebe, M. Cornelsen, A. Quade, V. Weissmann, F. Kunz, S. Ofe, K. Schroeder, B. Finke, H. Seitz, and C. Bergemann, Osteoblast Behavior In Vitro in Porous Calcium Phosphate Composite Scaffolds, Surface Activated with a Cell Adhesive Plasma Polymer Layer, Mater. Sci. Forum, 2012, 706–709, p 566–571
    • (2012) Mater. Sci. Forum , vol.706-709 , pp. 566-571
    • Nebe, J.B.1    Cornelsen, M.2    Quade, A.3    Weissmann, V.4    Kunz, F.5    Ofe, S.6    Schroeder, K.7    Finke, B.8    Seitz, H.9    Bergemann, C.10
  • 23
    • 0037082740 scopus 로고    scopus 로고
    • Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
    • I. Zein, Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications, Biomaterials, 2002, 23, p 1169–1185
    • (2002) Biomaterials , vol.23 , pp. 1169-1185
    • Zein, I.1
  • 24
    • 0035840815 scopus 로고    scopus 로고
    • Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low Temperature Deposition
    • Z. Xiong, Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low Temperature Deposition, Scripta Mater., 2001, 45, p 773–779
    • (2001) Scripta Mater , vol.45 , pp. 773-779
    • Xiong, Z.1
  • 25
    • 84920254255 scopus 로고    scopus 로고
    • Knowledge Enterprise: Intelligent Strategies in Product Design
    • B. Ma, Knowledge Enterprise: Intelligent Strategies in Product Design, Manuf. Manag., 2006, 207, p 710–716
    • (2006) Manuf. Manag , vol.207 , pp. 710-716
    • Ma, B.1
  • 26
    • 84862948624 scopus 로고    scopus 로고
    • In Vitro Experiments on Laser Sintered Porous PCL Scaffolds with Polymer Hydrogel for Bone Repair
    • M.Y. Lee, S.W. Liu, J.P. Chen, H.T. Liao, W.W. Tsai, and H.C. Wang, In Vitro Experiments on Laser Sintered Porous PCL Scaffolds with Polymer Hydrogel for Bone Repair, J. Mech. Med. Biol., 2011, 11, p 983–992
    • (2011) J. Mech. Med. Biol , vol.11 , pp. 983-992
    • Lee, M.Y.1    Liu, S.W.2    Chen, J.P.3    Liao, H.T.4    Tsai, W.W.5    Wang, H.C.6
  • 27
    • 14844322862 scopus 로고    scopus 로고
    • Bone Tissue Engineering Using Polycaprolactone Scaffold Fabricated Via Selective Laser Sintering
    • J.M. Williams, Bone Tissue Engineering Using Polycaprolactone Scaffold Fabricated Via Selective Laser Sintering, Biomaterials, 2005, 26, p 4817–4827
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1
  • 28
    • 84855815432 scopus 로고    scopus 로고
    • Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds
    • G.A. Fielding, A. Bandyopadhyay, and S. Bose, Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds, Dent. Mater., 2012, 28, p 113–122
    • (2012) Dent. Mater , vol.28 , pp. 113-122
    • Fielding, G.A.1    Bandyopadhyay, A.2    Bose, S.3
  • 29
    • 84859575100 scopus 로고    scopus 로고
    • Mechanical and Thermal Properties of Polymethylmethacrylate Bone Cement Composites Incorporated with Hydroxyapatite and Glass-Ceramic Fillers
    • A.S. Hamizah, M. Mariatti, R. Othman, M. Kawashita, and A.R.N. Hayati, Mechanical and Thermal Properties of Polymethylmethacrylate Bone Cement Composites Incorporated with Hydroxyapatite and Glass-Ceramic Fillers, J. Appl. Polym. Sci., 2012, 125, p 661–669
    • (2012) J. Appl. Polym. Sci , vol.125 , pp. 661-669
    • Hamizah, A.S.1    Mariatti, M.2    Othman, R.3    Kawashita, M.4    Hayati, A.R.N.5
  • 30
    • 64249117012 scopus 로고    scopus 로고
    • 3-Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution
    • 3-Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution, Acta Biomater., 2009, 5, p 1265–1273
    • (2009) Acta Biomater , vol.5 , pp. 1265-1273
    • Zhao, D.1    Huang, W.2    Rahaman, M.N.3
  • 31
    • 35048822053 scopus 로고    scopus 로고
    • 2 Coatings for Biomedical Application
    • 2 Coatings for Biomedical Application, J. Mech. Behav. Biomed., 2008, 1, p 105–111
    • (2008) J. Mech. Behav. Biomed , vol.1 , pp. 105-111
    • Morks, M.E.1
  • 33
    • 84861530511 scopus 로고    scopus 로고
    • Design and Production of Sintered β-Tricalcium Phosphate 3D Scaffolds for Bone Tissue Regeneration
    • C.F.L. Santos, A.P. Silva, L. Lopes, I. Pires, and I.J. Correia, Design and Production of Sintered β-Tricalcium Phosphate 3D Scaffolds for Bone Tissue Regeneration, Mater. Sci. Eng. C, 2012, 32, p 1293–1298
    • (2012) Mater. Sci. Eng. C , vol.32 , pp. 1293-1298
    • Santos, C.F.L.1    Silva, A.P.2    Lopes, L.3    Pires, I.4    Correia, I.J.5
  • 34
    • 77956010965 scopus 로고    scopus 로고
    • Differences Between In Vitro Viability and Differentiation and In Vivo Bone-Forming Efficacy of Human Mesenchymal Stem Cells Cultured on PCL-TCP Scaffolds
    • B. Rai, J.L. Lin, Z.X.H. Lim, R.E. Guldberg, D.W. Hutmacher, and S.M. Cool, Differences Between In Vitro Viability and Differentiation and In Vivo Bone-Forming Efficacy of Human Mesenchymal Stem Cells Cultured on PCL-TCP Scaffolds, Biomaterials, 2010, 31, p 7960–7970
    • (2010) Biomaterials , vol.31 , pp. 7960-7970
    • Rai, B.1    Lin, J.L.2    Lim, Z.X.H.3    Guldberg, R.E.4    Hutmacher, D.W.5    Cool, S.M.6
  • 35
    • 84941944801 scopus 로고    scopus 로고
    • Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro
    • L. Shor, S. Guceri, X. Wen, M. Gandhi, and W. Sun, Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions In Vitro, Biomaterials, 2007, 28, p 5291–5297
    • (2007) Biomaterials , vol.28 , pp. 5291-5297
    • Shor, L.1    Guceri, S.2    Wen, X.3    Gandhi, M.4    Sun, W.5
  • 36
    • 0035239029 scopus 로고    scopus 로고
    • Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength
    • D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22, p 87–96
    • (2001) Biomaterials , vol.22 , pp. 87-96
    • Deligianni, D.D.1    Katsala, N.D.2    Koutsoukos, P.G.3    Missirlis, Y.F.4
  • 37
    • 84894634298 scopus 로고    scopus 로고
    • Synthesis of Biomedical Composite Scaffolds by Laser Sintering: Mechanical Properties and In Vitro Bioactivity Evaluation
    • F.H. Liu, Synthesis of Biomedical Composite Scaffolds by Laser Sintering: Mechanical Properties and In Vitro Bioactivity Evaluation, Appl. Surf. Sci., 2014, 297, p 1–8
    • (2014) Appl. Surf. Sci , vol.297 , pp. 1-8
    • Liu, F.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.