메뉴 건너뛰기




Volumn 110, Issue 3, 2014, Pages 308-327

Low-Rank Bilinear Classification: Efficient Convex Optimization and Extensions

Author keywords

Bilinear classifier; Convex optimization; Cross modal learning; Low rank matrix; Multiple kernel learning

Indexed keywords

CONVEX OPTIMIZATION;

EID: 84920254471     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-014-0709-5     Document Type: Article
Times cited : (16)

References (51)
  • 1
    • 84920252785 scopus 로고    scopus 로고
    • Akaho, S. (2001). A kernel method for canonical correlation analysis. In international meeting on psychometric society (IMPS2001)
    • Akaho, S. (2001). A kernel method for canonical correlation analysis. In international meeting on psychometric society (IMPS2001).
  • 2
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46(1), 131–159.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 85016707312 scopus 로고    scopus 로고
    • Visual categorization with bags of keypoints. In: ECCV workshop on statistical learning in computer vision, (pp
    • Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C. (2004). Visual categorization with bags of keypoints. In: ECCV workshop on statistical learning in computer vision, (pp. 1–22).
    • (2004) 1–22)
    • Csurka, G.1    Dance, C.R.2    Fan, L.3    Willamowski, J.4    Bray, C.5
  • 11
    • 77955994778 scopus 로고    scopus 로고
    • Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm
    • Eriksson, A., van den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the $$l_1$$l1 norm. In IEEE conference on computer vision and pattern recognition (CVPR), (pp. 771–778).
    • (2010) In IEEE conference on computer vision and pattern recognition (CVPR) , pp. 771-778
    • Eriksson, A.1    van den Hengel, A.2
  • 12
    • 84920249997 scopus 로고    scopus 로고
    • Everingham, M., Gool, L. V., Williams, C., Winn, J., & Zisserman, A. (2007). The PASCAL visual object classes challenge 2007 (VOC2007) results
    • Everingham, M., Gool, L. V., Williams, C., Winn, J., & Zisserman, A. (2007). The PASCAL visual object classes challenge 2007 (VOC2007) results.
  • 13
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan, R. E., Chen, P. H., & Lin, C. J. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1889–1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 21
    • 57249088954 scopus 로고    scopus 로고
    • A three-way auto-correlation based approach to motion recognition
    • Kobayashi, T., & Otsu, N. (2009). A three-way auto-correlation based approach to motion recognition. Pattern Recognition Letters, 30(3), 185–192.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.3 , pp. 185-192
    • Kobayashi, T.1    Otsu, N.2
  • 23
    • 84859361245 scopus 로고    scopus 로고
    • Motion recognition using local auto-correlation of space-time gradients
    • Kobayashi, T., & Otsu, N. (2012b). Motion recognition using local auto-correlation of space-time gradients. Pattern Recognition Letters, 33(9), 1188–1195.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.9 , pp. 1188-1195
    • Kobayashi, T.1    Otsu, N.2
  • 28
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D., & Seung, H. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant features
    • Lowe, D. G. (2004). Distinctive image features from scale invariant features. International Journal of Computer Vision, 60(2), 91–110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 32
    • 0004171986 scopus 로고    scopus 로고
    • The AR Face Database. Tech. Rep
    • Computer Vision Center, Bellatera:
    • Martínez, A., Benavente, R. (1998). The AR Face Database. Tech. Rep. 24, Computer Vision Center, Bellatera.
    • (1998) 24
    • Martínez, A.1    Benavente, R.2
  • 44
  • 45
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • Tenenbaum, J. B., & Freeman, W. T. (2000). Separating style and content with bilinear models. Neural Computation, 12(6), 1247–1283.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 51
    • 84898955107 scopus 로고    scopus 로고
    • Two-dimensional linear discriminant analysis
    • Saul LK, Weiss Y, Bottou L, (eds), MIT Press, Cambridge:
    • Ye, J., Janardan, R., & Li, Q. (2005). Two-dimensional linear discriminant analysis. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp. 1569–1576). Cambridge: MIT Press.
    • (2005) Advances in neural information processing systems 17 , pp. 1569-1576
    • Ye, J.1    Janardan, R.2    Li, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.