메뉴 건너뛰기




Volumn 11, Issue 4, 2014, Pages 314-322

Clustering digital forensic string search output

Author keywords

Clustering; Digital forensics; k means; LDA; SOM; Text string search

Indexed keywords

COMPUTER CRIME; DIGITAL FORENSICS; ELECTRONIC CRIME COUNTERMEASURES; NAVIGATION; STATISTICS;

EID: 84920025917     PISSN: 17422876     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.diin.2014.10.002     Document Type: Article
Times cited : (24)

References (21)
  • 1
    • 84868370729 scopus 로고    scopus 로고
    • XIRAF-XML-based indexing and querying for digital forensics
    • W. Alink, R. Bhoedjang, P. Boncz, and A. de Vries XIRAF-XML-based indexing and querying for digital forensics Digit Investig 2006 2006 50 58
    • (2006) Digit Investig , vol.2006 , pp. 50-58
    • Alink, W.1    Bhoedjang, R.2    Boncz, P.3    De Vries, A.4
  • 2
    • 34447558146 scopus 로고    scopus 로고
    • Digital forensic text string searching: Improving information retrieval effectiveness by thematically clustering search results
    • N.L. Beebe, and J.G. Clark Digital forensic text string searching: improving information retrieval effectiveness by thematically clustering search results Digit Investig 4 2007 49 54
    • (2007) Digit Investig , vol.4 , pp. 49-54
    • Beebe, N.L.1    Clark, J.G.2
  • 3
    • 34447545074 scopus 로고    scopus 로고
    • A new process model for text string searching
    • S. Shenoi, P. Craiger, Springer Norwell
    • N.L. Beebe, and G. Dietrich A new process model for text string searching S. Shenoi, P. Craiger, Research advances in digital forensics III 2007 Springer Norwell 73 85
    • (2007) Research Advances in Digital Forensics III , pp. 73-85
    • Beebe, N.L.1    Dietrich, G.2
  • 4
    • 80052930514 scopus 로고    scopus 로고
    • Post-retrieval search hit clustering to improve information retrieval effectiveness: Two digital forensic case studies
    • N.L. Beebe, J.G. Clark, G.B. Dietrich, M. Ko, and D. Ko Post-retrieval search hit clustering to improve information retrieval effectiveness: two digital forensic case studies Decis Support Syst 51 2011 732 744
    • (2011) Decis Support Syst , vol.51 , pp. 732-744
    • Beebe, N.L.1    Clark, J.G.2    Dietrich, G.B.3    Ko, M.4    Ko, D.5
  • 6
    • 51149115983 scopus 로고    scopus 로고
    • Applying topic modeling to forensic data
    • I. Ray, S. Shenoi, Springer Norwell
    • A. De Waal, J. Venter, and E. Barnard Applying topic modeling to forensic data I. Ray, S. Shenoi, Advances in digital forensics IV 2008 Springer Norwell 115 126
    • (2008) Advances in Digital Forensics IV , pp. 115-126
    • De Waal, A.1    Venter, J.2    Barnard, E.3
  • 8
    • 68649110054 scopus 로고    scopus 로고
    • Bringing science to digital forensics with standardized forensic corpora
    • S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt Bringing science to digital forensics with standardized forensic corpora Digit Investig 6 2009 S2 S11
    • (2009) Digit Investig , vol.6 , pp. 2-S11
    • Garfinkel, S.1    Farrell, P.2    Roussev, V.3    Dinolt, G.4
  • 10
    • 0001138328 scopus 로고
    • Algorithm AS 136: A k-means clustering algorithm
    • J.A. Hartigan, and M.A. Wong Algorithm AS 136: a k-means clustering algorithm Appl Stat 1979 100 108
    • (1979) Appl Stat , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 11
    • 78449239926 scopus 로고    scopus 로고
    • Mining writeprints from anonymous e-mails for forensic investigation
    • F. Iqbal, H. Binsalleeh, B. Fung, and M. Debbabi Mining writeprints from anonymous e-mails for forensic investigation Digit Investig 7 2010 56 64
    • (2010) Digit Investig , vol.7 , pp. 56-64
    • Iqbal, F.1    Binsalleeh, H.2    Fung, B.3    Debbabi, M.4
  • 12
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proc IEEE 78 1990 1464 1480
    • (1990) Proc IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 14
    • 84872043337 scopus 로고    scopus 로고
    • Document clustering for forensic analysis: An approach for improving computer inspection
    • LFdC. Nassif, and E.R. Hruschka Document clustering for forensic analysis: an approach for improving computer inspection IEEE Trans Inform Forensics Secur 8 2013 46 54
    • (2013) IEEE Trans Inform Forensics Secur , vol.8 , pp. 46-54
    • Nassif, L.F.D.C.1    Hruschka, E.R.2
  • 15
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • M.F. Porter An algorithm for suffix stripping Program 14 1980 130 137
    • (1980) Program , vol.14 , pp. 130-137
    • Porter, M.F.1
  • 17
    • 51849111277 scopus 로고    scopus 로고
    • A scalable self-organizing map algorithm for textual classification: A neural network approach to thesaurus generation
    • D. Roussinov, and H. Chen A scalable self-organizing map algorithm for textual classification: a neural network approach to thesaurus generation Commun Cogn Artif Intell 15 1998 81 111
    • (1998) Commun Cogn Artif Intell , vol.15 , pp. 81-111
    • Roussinov, D.1    Chen, H.2
  • 18
    • 51849111277 scopus 로고    scopus 로고
    • A scalable self-organizing map algorithm for textual classification: A neural network approach to thesaurus generation
    • D. Roussinov, and H. Chen A scalable self-organizing map algorithm for textual classification: a neural network approach to thesaurus generation Commun Cogn Artif Intell 15 1999 81 112
    • (1999) Commun Cogn Artif Intell , vol.15 , pp. 81-112
    • Roussinov, D.1    Chen, H.2
  • 20
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, and T. Hastie Estimating the number of clusters in a data set via the gap statistic J R Stat Soc Ser B Stat Methodol 63 2001 411 423
    • (2001) J R Stat Soc ser B Stat Methodol , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.