메뉴 건너뛰기




Volumn 8, Issue 1, 2013, Pages 46-54

Document clustering for forensic analysis: An approach for improving computer inspection

Author keywords

Clustering; forensic computing; text mining

Indexed keywords

AUTOMATED METHODS; CLUSTERING; CLUSTERING DOCUMENTS; COMPUTER INSPECTION; DOCUMENT CLUSTERING; FORENSIC ANALYSIS; FORENSIC COMPUTING; K-MEANS; K-MEDOIDS; NUMBER OF CLUSTERS; POLICE INVESTIGATIONS; REAL-WORLD DATASETS; SINGLE LINK; TEXT MINING; VALIDITY INDEX;

EID: 84872043337     PISSN: 15566013     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIFS.2012.2223679     Document Type: Article
Times cited : (82)

References (29)
  • 5
  • 6
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles: A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh, "Cluster ensembles: A knowledge reuse framework for combining multiple partitions," J. Mach. Learning Res., vol. 3, pp. 583-617, 2002.
    • (2002) J. Mach. Learning Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 7
    • 33748296225 scopus 로고    scopus 로고
    • Evolving clusters in gene-expression data
    • DOI 10.1016/j.ins.2005.07.015, PII S0020025505002331
    • E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro, "Evolving clusters in gene-expression data," Inf. Sci., vol. 176, pp. 1898-1927, 2006. (Pubitemid 44321891)
    • (2006) Information Sciences , vol.176 , Issue.13 , pp. 1898-1927
    • Hruschka, E.R.1    Campello, R.J.G.B.2    De Castro, L.N.3
  • 9
    • 34447558146 scopus 로고    scopus 로고
    • Digital forensic text string searching: Improving information retrieval effectiveness by thematically clustering search results
    • DOI 10.1016/j.diin.2007.05.001, PII S1742287607000412
    • N. L. Beebe and J. G. Clark, "Digital forensic text string searching: Improving information retrieval effectiveness by thematically clustering search results," Digital Investigation, Elsevier, vol. 4, no. 1, pp. 49-54, 2007. (Pubitemid 47081439)
    • (2007) Digital Investigation , vol.4 , Issue.SUPPL. , pp. 49-54
    • Beebe, N.L.1    Clark, J.G.2
  • 11
    • 78449239926 scopus 로고    scopus 로고
    • Mining writeprints from anonymous e-mails for forensic investigation
    • F. Iqbal, H. Binsalleeh, B. C. M. Fung, and M. Debbabi, "Mining writeprints from anonymous e-mails for forensic investigation," Digital Investigation, Elsevier, vol. 7, no. 1-2, pp. 56-64, 2010.
    • (2010) Digital Investigation Elsevier , vol.7 , Issue.1-2 , pp. 56-64
    • Iqbal, F.1    Binsalleeh, H.2    Fung, B.C.M.3    Debbabi, M.4
  • 15
    • 45549117987 scopus 로고
    • Term weighting approaches in automatic text retrieval
    • G. Salton and C. Buckley, "Term weighting approaches in automatic text retrieval," Inf. Process. Manage., vol. 24, no. 5, pp. 513-523, 1988.
    • (1988) Inf. Process. Manage , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 17
    • 0001116877 scopus 로고
    • Binary codes capable of correcting deletions, insertions, and reversals
    • V. Levenshtein, "Binary codes capable of correcting deletions, insertions, and reversals," Soviet Physics Doklady, vol. 10, pp. 707-710, 1966.
    • (1966) Soviet Physics Doklady , vol.10 , pp. 707-710
    • Levenshtein, V.1
  • 20
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert and P. Arabie, "Comparing partitions," J. Classification, vol. 2, pp. 193-218, 1985.
    • (1985) J. Classification , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 23
    • 84857811785 scopus 로고    scopus 로고
    • Document clustering for forensic computing: An approach for improving computer inspection
    • IEEE Press
    • L. F. Nassif and E. R. Hruschka, "Document clustering for forensic computing: An approach for improving computer inspection," in Proc. Tenth Int. Conf. Machine Learning and Applications (ICMLA), 2011, vol. 1, pp. 265-268, IEEE Press.
    • (2011) Proc. Tenth Int. Conf. Machine Learning and Applications (ICMLA) , vol.1 , pp. 265-268
    • Nassif, L.F.1    Hruschka, E.R.2
  • 24
    • 84949179803 scopus 로고    scopus 로고
    • Chapter 4: A Survey of text clustering algorithms
    • NewYork: Springer
    • Aggarwal, C. C. Charu, and C. X. Zhai, Eds., "Chapter 4: A Survey of Text Clustering Algorithms," in Mining Text Data. NewYork: Springer, 2012.
    • (2012) Mining Text Data
    • Aggarwal1    Charu, C.C.2    Zhai, C.X.3
  • 25
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • DOI 10.1007/s10618-005-0361-3
    • Y. Zhao, G. Karypis, and U. M. Fayyad, "Hierarchical clustering algorithms for document datasets," Data Min. Knowl. Discov., vol. 10, no. 2, pp. 141-168, 2005. (Pubitemid 41217849)
    • (2005) Data Mining and Knowledge Discovery , vol.10 , Issue.2 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2
  • 26
    • 0038156237 scopus 로고    scopus 로고
    • Evaluation of hierarchical clustering algorithms for document datasets
    • Y. Zhao and G. Karypis, "Evaluation of hierarchical clustering algorithms for document datasets," in Proc. CIKM, 2002, pp. 515-524.
    • (2002) Proc. CIKM , pp. 515-524
    • Zhao, Y.1    Karypis, G.2
  • 28
    • 77952961013 scopus 로고    scopus 로고
    • High-speed rough clustering for very large document collections
    • doi: 10.1002/asi.2131
    • K. Kishida, "High-speed rough clustering for very large document collections," J. Amer. Soc. Inf. Sci., vol. 61, pp. 1092-1104, 2010, doi: 10.1002/asi.2131.
    • (2010) J. Amer. Soc. Inf. Sci. , vol.61 , pp. 1092-1104
    • Kishida, K.1
  • 29
    • 46249133773 scopus 로고    scopus 로고
    • Efficient algorithms for accurate hierarchical clustering of huge datasets: Tackling the entire protein space
    • DOI 10.1093/bioinformatics/btn174
    • Y. Loewenstein, E. Portugaly, M. Fromer, and M. Linial, "Effcient algorithms for exact hierarchical clustering of huge datasets: Tackling the entire protein space," Bioinformatics, vol. 24, no. 13, pp. i41-i49, 2008. (Pubitemid 351911656)
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Loewenstein, Y.1    Portugaly, E.2    Fromer, M.3    Linial, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.