-
1
-
-
34548110786
-
The expanding digital universe: A forecast of worldwide information growth through 2010
-
J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton, I. Xheneti, A. Toncheva, and A. Manfrediz, "The expanding digital universe: A forecast of worldwide information growth through 2010," Inf. Data, vol. 1, pp. 1-21, 2007.
-
(2007)
Inf. Data
, vol.1
, pp. 1-21
-
-
Gantz, J.F.1
Reinsel, D.2
Chute, C.3
Schlichting, W.4
McArthur, J.5
Minton, S.6
Xheneti, I.7
Toncheva, A.8
Manfrediz, A.9
-
6
-
-
0041965980
-
Cluster ensembles: A knowledge reuse framework for combining multiple partitions
-
A. Strehl and J. Ghosh, "Cluster ensembles: A knowledge reuse framework for combining multiple partitions," J. Mach. Learning Res., vol. 3, pp. 583-617, 2002.
-
(2002)
J. Mach. Learning Res.
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
7
-
-
33748296225
-
Evolving clusters in gene-expression data
-
DOI 10.1016/j.ins.2005.07.015, PII S0020025505002331
-
E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro, "Evolving clusters in gene-expression data," Inf. Sci., vol. 176, pp. 1898-1927, 2006. (Pubitemid 44321891)
-
(2006)
Information Sciences
, vol.176
, Issue.13
, pp. 1898-1927
-
-
Hruschka, E.R.1
Campello, R.J.G.B.2
De Castro, L.N.3
-
8
-
-
33845539489
-
Exploring forensic data with self-organizing maps
-
B. K. L. Fei, J. H. P. Eloff, H. S. Venter, andM. S. Oliver, "Exploring forensic data with self-organizing maps," in Proc. IFIP Int. Conf. Digital Forensics, 2005, pp. 113-123.
-
(2005)
Proc. IFIP Int. Conf. Digital Forensics
, pp. 113-123
-
-
Fei, B.K.L.1
Eloff, J.H.P.2
Venter, H.S.3
Oliver, M.S.4
-
9
-
-
34447558146
-
Digital forensic text string searching: Improving information retrieval effectiveness by thematically clustering search results
-
DOI 10.1016/j.diin.2007.05.001, PII S1742287607000412
-
N. L. Beebe and J. G. Clark, "Digital forensic text string searching: Improving information retrieval effectiveness by thematically clustering search results," Digital Investigation, Elsevier, vol. 4, no. 1, pp. 49-54, 2007. (Pubitemid 47081439)
-
(2007)
Digital Investigation
, vol.4
, Issue.SUPPL.
, pp. 49-54
-
-
Beebe, N.L.1
Clark, J.G.2
-
10
-
-
60949101437
-
Towards an integrated e-mail forensic analysis framework
-
R. Hadjidj, M. Debbabi, H. Lounis, F. Iqbal, A. Szporer, and D. Benredjem, "Towards an integrated e-mail forensic analysis framework," Digital Investigation, Elsevier, vol. 5, no. 3-4, pp. 124-137, 2009.
-
(2009)
Digital Investigation Elsevier
, vol.5
, Issue.3-4
, pp. 124-137
-
-
Hadjidj, R.1
Debbabi, M.2
Lounis, H.3
Iqbal, F.4
Szporer, A.5
Benredjem, D.6
-
11
-
-
78449239926
-
Mining writeprints from anonymous e-mails for forensic investigation
-
F. Iqbal, H. Binsalleeh, B. C. M. Fung, and M. Debbabi, "Mining writeprints from anonymous e-mails for forensic investigation," Digital Investigation, Elsevier, vol. 7, no. 1-2, pp. 56-64, 2010.
-
(2010)
Digital Investigation Elsevier
, vol.7
, Issue.1-2
, pp. 56-64
-
-
Iqbal, F.1
Binsalleeh, H.2
Fung, B.C.M.3
Debbabi, M.4
-
12
-
-
84857840005
-
Text clustering for digital forensics analysis
-
S. Decherchi, S. Tacconi, J. Redi, A. Leoncini, F. Sangiacomo, and R. Zunino, "Text clustering for digital forensics analysis," Computat. Intell. Security Inf. Syst., vol. 63, pp. 29-36, 2009.
-
(2009)
Computat. Intell. Security Inf. Syst
, vol.63
, pp. 29-36
-
-
Decherchi, S.1
Tacconi, S.2
Redi, J.3
Leoncini, A.4
Sangiacomo, F.5
Zunino, R.6
-
13
-
-
79951507394
-
Fuzzy methods for forensic data analysis
-
K. Stoffel, P. Cotofrei, and D. Han, "Fuzzy methods for forensic data analysis," in Proc. IEEE Int. Conf. Soft Computing and Pattern Recognition, 2010, pp. 23-28.
-
(2010)
Proc IEEE Int. Conf. Soft Computing and Pattern Recognition
, pp. 23-28
-
-
Stoffel, K.1
Cotofrei, P.2
Han, D.3
-
14
-
-
78649934960
-
Relative clustering validity criteria: A comparative overview
-
L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka, "Relative clustering validity criteria: A comparative overview," Statist. Anal. Data Mining, vol. 3, pp. 209-235, 2010.
-
(2010)
Statist. Anal. Data Mining
, vol.3
, pp. 209-235
-
-
Vendramin, L.1
Campello, R.J.G.B.2
Hruschka, E.R.3
-
15
-
-
45549117987
-
Term weighting approaches in automatic text retrieval
-
G. Salton and C. Buckley, "Term weighting approaches in automatic text retrieval," Inf. Process. Manage., vol. 24, no. 5, pp. 513-523, 1988.
-
(1988)
Inf. Process. Manage
, vol.24
, Issue.5
, pp. 513-523
-
-
Salton, G.1
Buckley, C.2
-
16
-
-
33749373958
-
A comparative study on unsupervised feature selection methods for text clustering
-
L. Liu, J. Kang, J. Yu, and Z. Wang, "A comparative study on unsupervised feature selection methods for text clustering," in Proc. IEEE Int. Conf. Natural Language Processing and Knowledge Engineering, 2005, pp. 597-601.
-
(2005)
Proc IEEE Int. Conf. Natural Language Processing and Knowledge Engineering
, pp. 597-601
-
-
Liu, L.1
Kang, J.2
Yu, J.3
Wang, Z.4
-
17
-
-
0001116877
-
Binary codes capable of correcting deletions, insertions, and reversals
-
V. Levenshtein, "Binary codes capable of correcting deletions, insertions, and reversals," Soviet Physics Doklady, vol. 10, pp. 707-710, 1966.
-
(1966)
Soviet Physics Doklady
, vol.10
, pp. 707-710
-
-
Levenshtein, V.1
-
19
-
-
21244468777
-
Combining multiple clusterings using evidence accumulation
-
DOI 10.1109/TPAMI.2005.113
-
A. L. N. Fred and A. K. Jain, "Combining multiple clusterings using evidence accumulation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 835-850, Jun. 2005. (Pubitemid 40889836)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 835-850
-
-
Fred, A.L.N.1
Jain, A.K.2
-
20
-
-
0000008146
-
Comparing partitions
-
L. Hubert and P. Arabie, "Comparing partitions," J. Classification, vol. 2, pp. 193-218, 1985.
-
(1985)
J. Classification
, vol.2
, pp. 193-218
-
-
Hubert, L.1
Arabie, P.2
-
23
-
-
84857811785
-
Document clustering for forensic computing: An approach for improving computer inspection
-
IEEE Press
-
L. F. Nassif and E. R. Hruschka, "Document clustering for forensic computing: An approach for improving computer inspection," in Proc. Tenth Int. Conf. Machine Learning and Applications (ICMLA), 2011, vol. 1, pp. 265-268, IEEE Press.
-
(2011)
Proc. Tenth Int. Conf. Machine Learning and Applications (ICMLA)
, vol.1
, pp. 265-268
-
-
Nassif, L.F.1
Hruschka, E.R.2
-
24
-
-
84949179803
-
Chapter 4: A Survey of text clustering algorithms
-
NewYork: Springer
-
Aggarwal, C. C. Charu, and C. X. Zhai, Eds., "Chapter 4: A Survey of Text Clustering Algorithms," in Mining Text Data. NewYork: Springer, 2012.
-
(2012)
Mining Text Data
-
-
Aggarwal1
Charu, C.C.2
Zhai, C.X.3
-
25
-
-
24044537630
-
Hierarchical clustering algorithms for document datasets
-
DOI 10.1007/s10618-005-0361-3
-
Y. Zhao, G. Karypis, and U. M. Fayyad, "Hierarchical clustering algorithms for document datasets," Data Min. Knowl. Discov., vol. 10, no. 2, pp. 141-168, 2005. (Pubitemid 41217849)
-
(2005)
Data Mining and Knowledge Discovery
, vol.10
, Issue.2
, pp. 141-168
-
-
Zhao, Y.1
Karypis, G.2
-
26
-
-
0038156237
-
Evaluation of hierarchical clustering algorithms for document datasets
-
Y. Zhao and G. Karypis, "Evaluation of hierarchical clustering algorithms for document datasets," in Proc. CIKM, 2002, pp. 515-524.
-
(2002)
Proc. CIKM
, pp. 515-524
-
-
Zhao, Y.1
Karypis, G.2
-
27
-
-
3142780768
-
Incremental and effective data summarization for dynamic hierarchical clustering
-
S. Nassar, J. Sander, and C. Cheng, "Incremental and effective data summarization for dynamic hierarchical clustering," in Proc. 2004 ACM SIGMOD Int. Conf. Management of Data (SIGMOD '04), 2004, pp. 467-478.
-
(2004)
Proc 2004 ACM SIGMOD Int. Conf. Management of Data (SIGMOD '04)
, pp. 467-478
-
-
Nassar, S.1
Sander, J.2
Cheng, C.3
-
28
-
-
77952961013
-
High-speed rough clustering for very large document collections
-
doi: 10.1002/asi.2131
-
K. Kishida, "High-speed rough clustering for very large document collections," J. Amer. Soc. Inf. Sci., vol. 61, pp. 1092-1104, 2010, doi: 10.1002/asi.2131.
-
(2010)
J. Amer. Soc. Inf. Sci.
, vol.61
, pp. 1092-1104
-
-
Kishida, K.1
-
29
-
-
46249133773
-
Efficient algorithms for accurate hierarchical clustering of huge datasets: Tackling the entire protein space
-
DOI 10.1093/bioinformatics/btn174
-
Y. Loewenstein, E. Portugaly, M. Fromer, and M. Linial, "Effcient algorithms for exact hierarchical clustering of huge datasets: Tackling the entire protein space," Bioinformatics, vol. 24, no. 13, pp. i41-i49, 2008. (Pubitemid 351911656)
-
(2008)
Bioinformatics
, vol.24
, Issue.13
-
-
Loewenstein, Y.1
Portugaly, E.2
Fromer, M.3
Linial, M.4
|