메뉴 건너뛰기




Volumn 3, Issue , 2014, Pages 2137-2145

Coding for random projections

Author keywords

[No Author keywords available]

Indexed keywords

ALUMINUM; ARTIFICIAL INTELLIGENCE; DIGITAL STORAGE; EXPERIMENTS; SUPPORT VECTOR MACHINES;

EID: 84919882406     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (31)

References (30)
  • 1
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • San Francisco, CA
    • Bingham, Ella and Mannila, Heikki. Random projection in dimensionality reduction: Applications to image and text data. In KDD, pp. 245-250, San Francisco, CA, 2001.
    • (2001) KDD , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 2
    • 84919906276 scopus 로고    scopus 로고
    • Bottou, Leon, http://leon.bottou.org/projects/sgd.
    • Bottou, L.1
  • 3
    • 0036110853 scopus 로고    scopus 로고
    • Finding motifs using random projections
    • Buhler, Jeremy and Tompa, Martin. Finding motifs using random projections. Journal of Computational Biology, 9(2):225-242, 2002.
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 225-242
    • Buhler, J.1    Tompa, M.2
  • 4
    • 84963650728 scopus 로고
    • Universal classes of hash functions
    • Carter, J. Lawrence and Wegman, Mark N. Universal classes of hash functions. In STOC, pp. 106-112, 1977.
    • (1977) STOC , pp. 106-112
    • Carter, J.L.1    Wegman, M.N.2
  • 5
    • 0348230637 scopus 로고    scopus 로고
    • Finding frequent items in data streams
    • Charikar, Moses, Chen, Kevin, and Farach-Colton, Martin. Finding frequent items in data streams. Theor. Comput. Sci., 312(1):3-15, 2004.
    • (2004) Theor. Comput. Sci. , vol.312 , Issue.1 , pp. 3-15
    • Charikar, M.1    Chen, K.2    Farach-Colton, M.3
  • 6
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • Montreal, Quebec, Canada
    • Charikar, Moses S. Similarity estimation techniques from rounding algorithms. In STOC, pp. 380-388, Montreal, Quebec, Canada, 2002.
    • (2002) STOC , pp. 380-388
    • Charikar, M.S.1
  • 7
    • 14844367057 scopus 로고    scopus 로고
    • An improved data stream summary: The count-min sketch and its applications
    • Cormode, Graham and Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithm, 55(1):58-75, 2005.
    • (2005) Journal of Algorithm , vol.55 , Issue.1 , pp. 58-75
    • Cormode, G.1    Muthukrishnan, S.2
  • 8
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of gaussians
    • New York
    • Dasgupta, Sanjoy. Learning mixtures of gaussians. In FOCS, pp. 634-644, New York, 1999.
    • (1999) FOCS , pp. 634-644
    • Dasgupta, S.1
  • 9
    • 0001883762 scopus 로고    scopus 로고
    • Experiments with random projection
    • Stanford, CA
    • Dasgupta, Sanjoy. Experiments with random projection. In UAI, pp. 143-151, Stanford, CA, 2000.
    • (2000) UAI , pp. 143-151
    • Dasgupta, S.1
  • 10
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • Brooklyn, NY
    • Datar, Mayur, Immorlica, Nicole, Indyk, Piotr, and Mirrokn, Vahab S. Locality-sensitive hashing scheme based on p-stable distributions. In SCG, pp. 253 - 262, Brooklyn, NY, 2004.
    • (2004) SCG , pp. 253-262
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokn, V.S.4
  • 12
    • 63249106662 scopus 로고    scopus 로고
    • Experiments with random projections for machine learning
    • Washington, DC
    • Fradkin, Dmitriy and Madigan, David. Experiments with random projections for machine learning. In KDD, pp. 517-522, Washington, DC, 2003.
    • (2003) KDD , pp. 517-522
    • Fradkin, D.1    Madigan, D.2
  • 13
    • 85161978528 scopus 로고    scopus 로고
    • Learning the structure of manifolds using random projections
    • Vancouver, BC, Canada
    • Freund, Yoav, Dasgupta, Sanjoy, Kabra, Mayank, and Verma, Nakul. Learning the structure of manifolds using random projections. In NIPS, Vancouver, BC, Canada, 2008.
    • (2008) NIPS
    • Freund, Y.1    Dasgupta, S.2    Kabra, M.3    Verma, N.4
  • 15
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, Michel X. and Williamson, David P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of ACM, 42(6): 1115-1145, 1995.
    • (1995) Journal of ACM , vol.42 , Issue.6 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 16
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • Dallas, TX
    • Indyk, Piotr and Motwani, Rajeev. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC, pp. 604-613, Dallas, TX, 1998.
    • (1998) STOC , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 17
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • Pittsburgh, PA
    • Joachims, Thorsten. Training linear svms in linear time. In KDD, pp. 217-226, Pittsburgh, PA, 2006.
    • (2006) KDD , pp. 217-226
    • Joachims, T.1
  • 18
    • 0001654702 scopus 로고
    • Extensions of lipschitz mapping into hilbert space
    • Johnson, William B. and Lindenstrauss, Joram. Extensions of Lipschitz mapping into Hilbert space. Contemporary Mathematics, 26:189-206, 1984.
    • (1984) Contemporary Mathematics , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 19
    • 36949030233 scopus 로고    scopus 로고
    • Very sparse stable random projections for dimension reduction in lα (0 < α ≤ 2) norm
    • San Jose, CA
    • Li, Ping. Very sparse stable random projections for dimension reduction in lα (0 < α ≤ 2) norm. In KDD, San Jose, CA, 2007.
    • (2007) KDD
    • Li, P.1
  • 20
    • 33746094275 scopus 로고    scopus 로고
    • Improving random projections using marginal information
    • Pittsburgh, PA
    • Li, Ping, Hastie, Trevor J., and Church, Kenneth W. Improving random projections using marginal information. In COLT, pp. 635-649, Pittsburgh, PA, 2006.
    • (2006) COLT , pp. 635-649
    • Li, P.1    Hastie, T.J.2    Church, K.W.3
  • 21
    • 84877737308 scopus 로고    scopus 로고
    • One permutation hashing
    • Lake Tahoe, NV
    • Li, Ping, Owen, Art B, and Zhang, Cun-Hui. One permutation hashing. In NIPS, Lake Tahoe, NV, 2012.
    • (2012) NIPS
    • Li, P.1    Owen, A.B.2    Zhang, C.-H.3
  • 23
    • 49049116151 scopus 로고    scopus 로고
    • Why simple hash functions work: Exploiting the entropy in a data stream
    • Mitzenmacher, Michael and Vadhan, Salil. Why simple hash functions work: exploiting the entropy in a data stream. In SODA, 2008.
    • (2008) SODA
    • Mitzenmacher, M.1    Vadhan, S.2
  • 25
    • 0031619277 scopus 로고    scopus 로고
    • Latent semantic indexing: A probabilistic analysis
    • Seattle, WA
    • Papadimitriou, Christos H., Raghavan, Prabhakar, Tamaki, Hisao, and Vempala, Santosh. Latent semantic indexing: A probabilistic analysis. In PODS, pp. 159-168, Seattle, WA, 1998.
    • (1998) PODS , pp. 159-168
    • Papadimitriou, C.H.1    Raghavan, P.2    Tamaki, H.3    Vempala, S.4
  • 26
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • Corvalis, Oregon
    • Shalev-Shwartz, Shai, Singer, Yoram, and Srebro, Nathan. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pp. 807-814, Corvalis, Oregon, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 27
    • 84919820423 scopus 로고    scopus 로고
    • Densifying one permutation hashing via rotation for fast near neighbor search
    • Beijing, China
    • Shrivastava, Anshumali and Li, Ping. Densifying one permutation hashing via rotation for fast near neighbor search. In ICML, Beijing, China, 2014.
    • (2014) ICML
    • Shrivastava, A.1    Li, P.2
  • 28
    • 14844315829 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI
    • Vempala, Santosh. The Random Projection Method. American Mathematical Society, Providence, RI, 2004.
    • (2004) The Random Projection Method
    • Vempala, S.1
  • 29
    • 79951743210 scopus 로고    scopus 로고
    • Efficient nonnegative matrix factorization with random projections
    • Wang, Fei and Li, Ping. Efficient nonnegative matrix factorization with random projections. In SDM, 2010.
    • (2010) SDM
    • Wang, F.1    Li, P.2
  • 30
    • 71149087699 scopus 로고    scopus 로고
    • Feature hashing for large scale multitask learning
    • Weinberger, Kilian, Dasgupta, Anirban, Langford, John, Smola, Alex, and Attenberg, Josh. Feature hashing for large scale multitask learning. In ICML, pp. 1113-1120, 2009.
    • (2009) ICML , pp. 1113-1120
    • Weinberger, K.1    Dasgupta, A.2    Langford, J.3    Smola, A.4    Attenberg, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.