메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 3360-3368

Fast multi-stage submodular maximization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUNCTION EVALUATION; LEARNING SYSTEMS;

EID: 84919833423     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (34)
  • 1
    • 84902095946 scopus 로고    scopus 로고
    • Fast algorithms for maximizing sub modular functions
    • A. Badanidiyuru and J. Vondrak. Fast algorithms for maximizing sub modular functions. In SODA, 2014.
    • (2014) SODA
    • Badanidiyuru, A.1    Vondrak, J.2
  • 2
    • 77952590681 scopus 로고    scopus 로고
    • On the feature selection criterion based on an approximation of multidimensional mutual information
    • K. S. Balagani and V. V. Phoha. On the feature selection criterion based on an approximation of multidimensional mutual information. PAMI, IEEE Transactions, 2010.
    • (2010) PAMI, IEEE Transactions
    • Balagani, K.S.1    Phoha, V.V.2
  • 5
    • 48749136131 scopus 로고
    • Sub modular set functions, ma- Troids and the greedy algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem
    • M. Conforti and G. Cornuejols. Sub modular set functions, ma- Troids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Applied Mathematics, 1984.
    • (1984) Discrete Applied Mathematics
    • Conforti, M.1    Cornuejols, G.2
  • 6
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of in n for approximating set cover
    • U. Feige. A threshold of In n for approximating set cover. JACM, 1998.
    • (1998) JACM
    • Feige, U.1
  • 8
    • 84886063323 scopus 로고    scopus 로고
    • Algorithms for approximate minimization of the difference between sub modular functions, with applications
    • R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between sub modular functions, with applications. In UAI, 2012.
    • (2012) UAI
    • Iyer, R.1    Bilmes, J.2
  • 9
    • 84898975039 scopus 로고    scopus 로고
    • Sub modular optimization with sub modular cover and sub modular knapsack constraints
    • R. Iyer and J. Bilmes. Sub modular optimization with sub modular cover and sub modular knapsack constraints. In NIPS, 2013.
    • (2013) NIPS
    • Iyer, R.1    Bilmes, J.2
  • 10
    • 84898994015 scopus 로고    scopus 로고
    • Curvature and optimal algorithms for learning and minimizing sub modular functions
    • R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Optimal Algorithms for Learning and Minimizing Sub modular Functions. NIPS, 2013a.
    • (2013) NIPS
    • Iyer, R.1    Jegelka, S.2    Bilmes, J.3
  • 11
    • 84897505165 scopus 로고    scopus 로고
    • Fast semi differential based sub modular function optimization
    • R. Iyer, S. Jegelka, and J. Bilmes. Fast semi differential based sub modular function optimization. In ICML, 2013b.
    • (2013) ICML
    • Iyer, R.1    Jegelka, S.2    Bilmes, J.3
  • 12
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
    • (2003) KDD
    • Kempe, D.1    Kleinberg, J.2    Tardos, E.3
  • 14
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE TPAMI, 26(2): 147-159, 2004.
    • (2004) IEEE TPAMI , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 15
    • 67650691734 scopus 로고    scopus 로고
    • Near-optimal non myopic value of information in graphical models
    • A. Krause and C. Guestrin. Near-optimal non myopic value of information in graphical models. In UAI, 2005.
    • (2005) UAI
    • Krause, A.1    Guestrin, C.2
  • 16
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
    • A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235-284, 2008.
    • (2008) JMLR , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 20
    • 70450220373 scopus 로고    scopus 로고
    • How to select a good training-data subset for transcription: Sub modular active selection for sequences
    • H. Lin and J. Bilmes. How to select a good training-data subset for transcription: Sub modular active selection for sequences. In Inter speech, 2009.
    • (2009) Inter Speech
    • Lin, H.1    Bilmes, J.2
  • 21
    • 84859070008 scopus 로고    scopus 로고
    • A class of sub modular functions for document summarization
    • H. Lin and J. Bilmes. A class of sub modular functions for document summarization. In ACL, 2011.
    • (2011) ACL
    • Lin, H.1    Bilmes, J.2
  • 22
    • 84886074716 scopus 로고    scopus 로고
    • Learning mixtures of sub modular shells with application to document summarization
    • H. Lin and J. Bilmes. Learning mixtures of sub modular shells with application to document summarization. In UAI, 2012.
    • (2012) UAI
    • Lin, H.1    Bilmes, J.2
  • 23
    • 84890455727 scopus 로고    scopus 로고
    • Sub modular feature selection for high-dimensional acoustic score spaces
    • Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes. Sub modular feature selection for high-dimensional acoustic score spaces. In ICASSP, 2013.
    • (2013) ICASSP
    • Liu, Y.1    Wei, K.2    Kirchhoff, K.3    Song, Y.4    Bilmes, J.5
  • 24
    • 77951148076 scopus 로고
    • Accelerated greedy algorithms for maximizing sub- modular set functions
    • M. Minoux. Accelerated greedy algorithms for maximizing sub- modular set functions. Optimization Techniques, 1978.
    • (1978) Optimization Techniques
    • Minoux, M.1
  • 25
    • 84898931932 scopus 로고    scopus 로고
    • Distributed sub modular maximization: Identifying representative elements in massive data
    • B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed sub modular maximization: Identifying representative elements in massive data. In NIPS, 2013.
    • (2013) NIPS
    • Mirzasoleiman, B.1    Karbasi, A.2    Sarkar, R.3    Krause, A.4
  • 26
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing sub modular set functions-I
    • Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing sub modular set functions-i. Mathematical Programming, (1), 1978.
    • (1978) Mathematical Programming , Issue.1
    • Nemhauser, L.W.1    Fisher, M.2
  • 27
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. PAMI, IEEE Transactions, 2005.
    • (2005) PAMI, IEEE Transactions
    • Peng, L.F.1    Ding, C.2
  • 28
    • 84858037291 scopus 로고    scopus 로고
    • How to win friends and influence people, truthfully: Influence maximization mechanisms for social networks
    • ACM
    • Y. Singer. How to win friends and influence people, truthfully: Influence maximization mechanisms for social networks. In WSDM. ACM, 2012.
    • (2012) WSDM
    • Singer, Y.1
  • 29
    • 85162051091 scopus 로고    scopus 로고
    • Efficient minimization of decomposable sub modular functions
    • P. Stobbe and A. Krause. Efficient minimization of decomposable sub modular functions. In NIPS, 2010.
    • (2010) NIPS
    • Stobbe, P.1    Krause, A.2
  • 30
    • 84926184611 scopus 로고    scopus 로고
    • Using document summarization techniques for speech data subset selection
    • K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Using document summarization techniques for speech data subset selection. In NAACUHLT, 2013.
    • (2013) NAACUHLT
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bilmes, J.4
  • 32
    • 84905251799 scopus 로고    scopus 로고
    • Sub modular subset selection for large-scale speech training data
    • K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes. Sub modular subset selection for large-scale speech training data. In ICASSP, 2014b.
    • (2014) ICASSP
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bartels, C.4    Bilmes, J.5
  • 33
    • 84905244750 scopus 로고    scopus 로고
    • Unsupervised sub- modular subset selection for speech data
    • K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Unsupervised sub- modular subset selection for speech data. In ICASSP, 2014c.
    • (2014) ICASSP
    • Wei, K.1    Liu, Y.2    Kirchhoff, K.3    Bilmes, J.4
  • 34
    • 44849132070 scopus 로고    scopus 로고
    • Data selection for speech recognition
    • Y. Wu, R. Zhang, and A. Rudnicky. Data selection for speech recognition. In ASRU, 2007.
    • (2007) ASRU
    • Wu, Y.1    Zhang, R.2    Rudnicky, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.