메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 87-110

Active detection via adaptive submodularity

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIODIVERSITY; COMPUTER VISION; LEARNING SYSTEMS;

EID: 84919795150     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (21)

References (26)
  • 3
    • 84865611811 scopus 로고    scopus 로고
    • On detection of multiple object instances using hough transforms
    • Barinova, O., Lempitsky, V, and Kholi, P. On detection of multiple object instances using hough transforms. PAMI, 2012.
    • (2012) PAMI
    • Barinova, O.1    Lempitsky, V.2    Kholi, P.3
  • 6
    • 84856684024 scopus 로고    scopus 로고
    • Strong supervision from weak annotation: Interactive training of deformable part models
    • Branson, S., Perona, P., and Belongie, S. Strong supervision from weak annotation: Interactive training of deformable part models. In ICCV, pp. 1832-1839, 2011.
    • (2011) ICCV , pp. 1832-1839
    • Branson, S.1    Perona, P.2    Belongie, S.3
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalai, N. and Triggs, B. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalai, N.1    Triggs, B.2
  • 9
    • 70450201402 scopus 로고    scopus 로고
    • Class-specific hough forests for object detection
    • Gall, J. and Lempitsky, V. S. Class-specific hough forests for object detection. In CVPR, 2009.
    • (2009) CVPR
    • Gall, J.1    Lempitsky, V.S.2
  • 11
    • 84856462978 scopus 로고    scopus 로고
    • Adaptive submodularity: Theory and applications in active learning and stochastic optimization
    • Golovin, D. and Krause, A. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. JAIR, 2011.
    • (2011) JAIR
    • Golovin, D.1    Krause, A.2
  • 13
    • 84866702739 scopus 로고    scopus 로고
    • Scalable active learning for multiclass image classification
    • Joshi, A.J., Porikli, F, and Papanikolopoulos, N.P. Scalable active learning for multiclass image classification. PAMI, 2012.
    • (2012) PAMI
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.P.3
  • 14
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with gaussian processes for object categorization
    • Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. Active learning with gaussian processes for object categorization. In ICCV, 2007.
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 15
    • 84863859831 scopus 로고    scopus 로고
    • Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation
    • Koh, L.P. and Wich, S.A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci, 2012.
    • (2012) Trop Conserv Sci
    • Koh, L.P.1    Wich, S.A.2
  • 16
    • 84856645721 scopus 로고    scopus 로고
    • Actively selecting annotations among objects and attributes
    • Kovashka, A., Vijayanarasimhan, S., and Grauman, K. Actively selecting annotations among objects and attributes. ICCV, 0: 1403-1410, 2011.
    • (2011) ICCV , vol.0 , pp. 1403-1410
    • Kovashka, A.1    Vijayanarasimhan, S.2    Grauman, K.3
  • 17
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • Kuhn, Harold W. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2: 83-97, 1955.
    • (1955) Naval Research Logistics Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 20
    • 84867858853 scopus 로고    scopus 로고
    • Attributes for classifier feedback
    • Parkash, A. and Parikh, D. Attributes for classifier feedback. In ECCV, pp. 354-368, 2012.
    • (2012) ECCV , pp. 354-368
    • Parkash, A.1    Parikh, D.2
  • 21
    • 84867888528 scopus 로고    scopus 로고
    • Constrained semi-supervised learning using attributes and comparative attributes
    • Shrivastava, A., Singh, S., and Gupta, A. Constrained semi-supervised learning using attributes and comparative attributes. In ECCV, pp. 369-383, 2012.
    • (2012) ECCV , pp. 369-383
    • Shrivastava, A.1    Singh, S.2    Gupta, A.3
  • 22
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S. and Koller, D. Support vector machine active learning with applications to text classification. JMLR, 2002.
    • (2002) JMLR
    • Tong, S.1    Koller, D.2
  • 23
    • 84858754668 scopus 로고    scopus 로고
    • Multi-level active prediction of useful image annotations for recognition
    • Vijayanarasimhan, S. and Grauman, K. Multi-level active prediction of useful image annotations for recognition. In MPS, pp. 1705-1712, 2008.
    • (2008) MPS , pp. 1705-1712
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 24
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • Vijayanarasimhan, S. and Grauman, K. Large-scale live active learning: Training object detectors with crawled data and crowds. In CVPR, 2011.
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 25
    • 77955994660 scopus 로고    scopus 로고
    • Far-sighted active learning on a budget for image and video recognition
    • Vijayanarasimhan, S., Jain, P., and Grauman, K. Far-sighted active learning on a budget for image and video recognition. In CVPR, pp. 3035-3042, 2010.
    • (2010) CVPR , pp. 3035-3042
    • Vijayanarasimhan, S.1    Jain, P.2    Grauman, K.3
  • 26
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • Wah, C, Branson, S., Perona, P., and Belongie, S. Multiclass recognition and part localization with humans in the loop. In ICCV, pp. 2524-2531, 2011.
    • (2011) ICCV , pp. 2524-2531
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.