메뉴 건너뛰기




Volumn 25, Issue 3-4, 2014, Pages 815-824

Efficient screening of enhanced oil recovery methods and predictive economic analysis

Author keywords

Artificial neural network; Economical study; EOR data; Fluid characteristics; Rock; Screening

Indexed keywords

COMPUTER SYSTEM RECOVERY; DEEP NEURAL NETWORKS; ECONOMIC ANALYSIS; NEURAL NETWORKS; OIL WELL FLOODING; PETROLEUM RESERVOIRS; ROCKS; SCREENING;

EID: 84893875594     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-014-1553-9     Document Type: Article
Times cited : (62)

References (30)
  • 1
    • 80052732334 scopus 로고    scopus 로고
    • Artificial intelligence selection with capability of editing a new parameter for EOR screening criteria
    • Abbas E, Song ChL (2011) Artificial intelligence selection with capability of editing a new parameter for EOR screening criteria. Journal of Engineering Science and Technology 6: 628-638.
    • (2011) Journal of Engineering Science and Technology , vol.6 , pp. 628-638
    • Abbas, E.1    Song, C.L.2
  • 12
    • 29544450036 scopus 로고    scopus 로고
    • Application of an expert system to optimize reservoir performance
    • Gharbi R (2005) Application of an expert system to optimize reservoir performance. Journal of Petroleum Science and Engineering 49: 261-273.
    • (2005) Journal of Petroleum Science and Engineering , vol.49 , pp. 261-273
    • Gharbi, R.1
  • 15
    • 84977952847 scopus 로고    scopus 로고
    • Selection and evaluation of enhanced oil recovery method using artificial neural network
    • Lee JY, Shin HJ, Lim JS (2011) Selection and evaluation of enhanced oil recovery method using artificial neural network. Geosystem Engineering 14: 157-164.
    • (2011) Geosystem Engineering , vol.14 , pp. 157-164
    • Lee, J.Y.1    Shin, H.J.2    Lim, J.S.3
  • 16
    • 49149099084 scopus 로고    scopus 로고
    • Optimized approximation algorithm in neural networks without overfitting
    • Liu Y, Starzyk JA, Zhu Z (2008) Optimized approximation algorithm in neural networks without overfitting. IEEE Transaction on Neural Networks 19(6): 983-995.
    • (2008) IEEE Transaction on Neural Networks , vol.19 , Issue.6 , pp. 983-995
    • Liu, Y.1    Starzyk, J.A.2    Zhu, Z.3
  • 17
    • 85039754622 scopus 로고    scopus 로고
    • MATLAB User's Guide, Natick, MA: The MathWorks Inc
    • MATLAB User's Guide (2002) Version 4, neural network toolbox. The MathWorks Inc., Natick, MA.
    • (2002) Version 4, Neural Network Toolbox
  • 18
    • 67650101769 scopus 로고    scopus 로고
    • The effect of high oil prices on EOR project economics
    • Mc Coy ST, Rubin ES (2009) The effect of high oil prices on EOR project economics. Energy Procedia 1: 4143-4150.
    • (2009) Energy Procedia , vol.1 , pp. 4143-4150
    • Mc Coy, S.T.1    Rubin, E.S.2
  • 19
    • 84877684347 scopus 로고    scopus 로고
    • Worldwide EOR survey
    • (1998) Worldwide EOR survey. Oil Gas J 96(16): 59-74. http://www. ogj. com/articles/print/volume-96/issue-16/in-this-issue/general-interest/1998-worldwide-eor-survey. html.
    • (1998) Oil Gas J , vol.96 , Issue.16 , pp. 59-74
  • 20
    • 33751016514 scopus 로고    scopus 로고
    • Worldwide EOR survey
    • (2006) Worldwide EOR survey. Oil Gas J 104(15): 45-57. http://www. ogj. com/articles/print/volume-104/issue-15/special-report/2006-worldwide-eor-survey. html.
    • (2006) Oil Gas J , vol.104 , Issue.15 , pp. 45-57
  • 21
    • 70849093035 scopus 로고    scopus 로고
    • Worldwide EOR survey
    • (2008) Worldwide EOR survey. Oil Gas J 106(15): 47-59. http://www. ogj. com/articles/print/volume-106/issue-15/drilling-production/special-report-2008-worldwide-eor-survey. html.
    • (2008) Oil Gas J , vol.106 , Issue.15 , pp. 47-59
  • 24
    • 84871010255 scopus 로고    scopus 로고
    • A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling
    • Piotrowski AP, Napiorkowski JJ (2013) A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. Journal of Hydrology 476: 97-111.
    • (2013) Journal of Hydrology , vol.476 , pp. 97-111
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 25
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F (1990) Networks for approximation and learning. Proceedings of the IEEE 78(9): 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 28
    • 0031210996 scopus 로고    scopus 로고
    • EOR screening criteria revisited-part 1: introduction to screening criteria and enhanced recovery field projects
    • Tulsa, Oklahoma, USA
    • Taber JJ, Martin FD, Seright RS (1997) EOR screening criteria revisited-part 1: introduction to screening criteria and enhanced recovery field projects. In: Proceeding of the SPE/DOE improved oil recovery symposium. Tulsa, Oklahoma, USA.
    • (1997) Proceeding of the SPE/DOE improved oil recovery symposium
    • Taber, J.J.1    Martin, F.D.2    Seright, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.