메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 3187-3220

Robust online gesture recognition with crowdsourced annotations

Author keywords

Accelerometer sensors; Crowdsourced annotation; Gesture spotting; Longest common subsequence; Template matching methods

Indexed keywords

ACCELEROMETERS; SUPPORT VECTOR MACHINES; TEMPLATE MATCHING;

EID: 84919723308     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (57)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: A review
    • April
    • J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Computing Surveys, 43(3):16:1-16:43, April 2011.
    • (2011) ACM Computing Surveys , vol.43 , Issue.3 , pp. 16:1-16:43
    • Aggarwal, J.1    Ryoo, M.2
  • 3
    • 28044467723 scopus 로고    scopus 로고
    • Semi-supervised learning with an imperfect supervisor
    • November
    • R. Amini and P. Gallinari. Semi-supervised learning with an imperfect supervisor. Knowledge and Information Systems, 8:385-413, November 2005.
    • (2005) Knowledge and Information Systems , vol.8 , pp. 385-413
    • Amini, R.1    Gallinari, P.2
  • 4
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • April
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, April 1988.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 14
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the EM algorithm
    • A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, 28(1):20-28, 1979.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 20
    • 84890228520 scopus 로고    scopus 로고
    • Most probable longest common subsequence for recognition of gesture character input
    • June
    • D. Frolova, H. Stern, and S. Berman. Most probable longest common subsequence for recognition of gesture character input. IEEE Transactions on Cybernetics, 43(3):871-880, June 2013.
    • (2013) IEEE Transactions on Cybernetics , vol.43 , Issue.3 , pp. 871-880
    • Frolova, D.1    Stern, H.2    Berman, S.3
  • 27
    • 58249131101 scopus 로고    scopus 로고
    • (accessed July 20, 2010), jun
    • J. Howe. The Rise of Crowdsourcing. (accessed July 20, 2010), jun 2006. URL http://www.wired.com/wired/archive/14.06/crowds.html.
    • (2006) The Rise of Crowdsourcing
    • Howe, J.1
  • 29
    • 38949199019 scopus 로고    scopus 로고
    • Gesture spotting with body-worn inertial sensors to detect user activities
    • H. Junker, O. Amft, P. Lukowicz, and G. Tröster. Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition, 41(6), 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.6
    • Junker, H.1    Amft, O.2    Lukowicz, P.3    Tröster, G.4
  • 47
    • 84885077333 scopus 로고    scopus 로고
    • Most discriminating segment - Longest common subsequence (MDSLCS) algorithm for dynamic hand gesture classification
    • H. Stern, M. Shmueli, and S. Berman. Most discriminating segment - longest common subsequence (MDSLCS) algorithm for dynamic hand gesture classification. Pattern Recognition Letters, 34(15):1980-1989, 2013.
    • (2013) Pattern Recognition Letters , vol.34 , Issue.15 , pp. 1980-1989
    • Stern, H.1    Shmueli, M.2    Berman, S.3
  • 51
    • 84958962331 scopus 로고    scopus 로고
    • Toward scalability in ASL recognition: Breaking down signs into phonemes Gesture-Based Communication in Human-Computer Interaction
    • C. Vogler and D. N. Metaxas. Toward scalability in ASL recognition: Breaking down signs into phonemes. In Gesture-Based Communication in Human-Computer Interaction, Lecture Notes in Computer Science, pages 211-224, 1999.
    • (1999) Lecture Notes in Computer Science , pp. 211-224
    • Vogler, C.1    Metaxas, D.N.2
  • 55
    • 0035400595 scopus 로고    scopus 로고
    • Hand gesture recognition using combined features of location, angle and velocity
    • H.-S. Yoon, J. Soh, Y. J. Bae, and H. S. Yang. Hand gesture recognition using combined features of location, angle and velocity. Pattern Recognition, 34, 2001.
    • (2001) Pattern Recognition , vol.34
    • Yoon, H.-S.1    Soh, J.2    Bae, Y.J.3    Yang, H.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.