메뉴 건너뛰기




Volumn 278, Issue , 2015, Pages 163-174

A self-cognizant dynamic system approach for prognostics and health management

Author keywords

Dynamic systems; Kalman filter State of health (SoH); Lithium ion battery; Prognostics and health management; State of charge (SoC)

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHARGING (BATTERIES); COMPLEX NETWORKS; DYNAMIC MODELS; DYNAMICAL SYSTEMS; ELECTRIC BATTERIES; KALMAN FILTERS; LITHIUM ALLOYS; LITHIUM BATTERIES; SECONDARY BATTERIES; STATE SPACE METHODS; SYSTEMS ENGINEERING;

EID: 84919608143     PISSN: 03787753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpowsour.2014.12.050     Document Type: Article
Times cited : (48)

References (38)
  • 1
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • J. Zhang, and J. Lee A review on prognostics and health monitoring of Li-ion battery J. Power Sources 196 15 2011 6007 6014
    • (2011) J. Power Sources , vol.196 , Issue.15 , pp. 6007-6014
    • Zhang, J.1    Lee, J.2
  • 3
    • 1542538895 scopus 로고    scopus 로고
    • A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system
    • K.T. Chau, K.C. Wu, and C.C. Chan A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system Energy Convers. Manag. 45 2004 1681 1692
    • (2004) Energy Convers. Manag. , vol.45 , pp. 1681-1692
    • Chau, K.T.1    Wu, K.C.2    Chan, C.C.3
  • 4
    • 0036610663 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles
    • W.X. Shen, C.C. Chan, E.W.C. Lo, and K.T. Chau Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles IEEE Trans. Ind. Electron. 49 2004 2002 677 684
    • (2002) IEEE Trans. Ind. Electron. , vol.49 , Issue.2004 , pp. 677-684
    • Shen, W.X.1    Chan, C.C.2    Lo, E.W.C.3    Chau, K.T.4
  • 5
    • 84875139591 scopus 로고    scopus 로고
    • The SOC estimation of power Li-ion battery based on ANFIS model
    • T. Wu, M. Wang, Q. Xiao, and X. Wang The SOC estimation of power Li-ion battery based on ANFIS model Smart Grid Renew. Energy (SGRE) 1 2012 51 55
    • (2012) Smart Grid Renew. Energy (SGRE) , vol.1 , pp. 51-55
    • Wu, T.1    Wang, M.2    Xiao, Q.3    Wang, X.4
  • 6
    • 84866292077 scopus 로고    scopus 로고
    • Online state-of-health estimation of VRLA batteries using state of charge
    • M. Shahriari, and M. Farrokhi Online state-of-health estimation of VRLA batteries using state of charge IEEE Trans. Ind. Electron. 60 1 2013 191 202
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , Issue.1 , pp. 191-202
    • Shahriari, M.1    Farrokhi, M.2
  • 7
    • 38349004913 scopus 로고    scopus 로고
    • Soft computing for battery state-of-charge (BSOC) estimation in battery string systems
    • Y.S. Lee, W.Y. Wang, and T.Y. Kuo Soft computing for battery state-of-charge (BSOC) estimation in battery string systems IEEE Trans. Ind. Electron. 55 1 2008 229 239
    • (2008) IEEE Trans. Ind. Electron. , vol.55 , Issue.1 , pp. 229-239
    • Lee, Y.S.1    Wang, W.Y.2    Kuo, T.Y.3
  • 8
    • 29044450593 scopus 로고    scopus 로고
    • Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles
    • W.X. Shen, K.T. Chau, C.C. Chan, and E.W.C. Lo Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles IEEE Trans. Veh. Technol. 54 5 2005 1705 1712
    • (2005) IEEE Trans. Veh. Technol. , vol.54 , Issue.5 , pp. 1705-1712
    • Shen, W.X.1    Chau, K.T.2    Chan, C.C.3    Lo, E.W.C.4
  • 9
    • 34147154733 scopus 로고    scopus 로고
    • State-of-charge estimation for electric scooters by using learning mechanisms
    • D.T. Lee, S.J. Shiah, C.M. Lee, and Y.C. Wang State-of-charge estimation for electric scooters by using learning mechanisms IEEE Trans. Veh. Technol. 56 2 2007 544 556
    • (2007) IEEE Trans. Veh. Technol. , vol.56 , Issue.2 , pp. 544-556
    • Lee, D.T.1    Shiah, S.J.2    Lee, C.M.3    Wang, Y.C.4
  • 10
    • 13844254548 scopus 로고    scopus 로고
    • Support vector based battery state of charge estimator
    • T. Hansen, and C.J. Wang Support vector based battery state of charge estimator J. Power Sources 141 2005 351 358
    • (2005) J. Power Sources , vol.141 , pp. 351-358
    • Hansen, T.1    Wang, C.J.2
  • 13
    • 0002425247 scopus 로고
    • On Markov chain Monte Carlo acceleration
    • A.E. Gelfand, and S.K. Sahu On Markov chain Monte Carlo acceleration J. Comput. Graph. Stat. 3 1994 261 276
    • (1994) J. Comput. Graph. Stat. , vol.3 , pp. 261-276
    • Gelfand, A.E.1    Sahu, S.K.2
  • 14
    • 84857618397 scopus 로고    scopus 로고
    • Identification of correlated damage parameters under noise and bias using Bayesian inference
    • D. An, J.H. Choi, and N.H. Kim Identification of correlated damage parameters under noise and bias using Bayesian inference Struct. Health Monit. 11 3 May, 2012 293 303
    • (2012) Struct. Health Monit. , vol.11 , Issue.3 , pp. 293-303
    • An, D.1    Choi, J.H.2    Kim, N.H.3
  • 16
    • 3142702292 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 1. Background
    • G.L. Plett Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - part 1. Background J. Power Sources 134 2004 252 261
    • (2004) J. Power Sources , vol.134 , pp. 252-261
    • Plett, G.L.1
  • 17
    • 3142752164 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification
    • G.L. Plett Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - part 2. Modeling and identification J. Power Sources 134 2004 262 276
    • (2004) J. Power Sources , vol.134 , pp. 262-276
    • Plett, G.L.1
  • 18
    • 3142674441 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 3. State and parameter estimation
    • G.L. Plett Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - part 3. State and parameter estimation J. Power Sources 134 2004 277 292
    • (2004) J. Power Sources , vol.134 , pp. 277-292
    • Plett, G.L.1
  • 19
    • 78349251330 scopus 로고    scopus 로고
    • State-of-charge estimation for lithium-ion batteries using neural network and EKF
    • M. Charkhgard, and M. Farrokhi State-of-charge estimation for lithium-ion batteries using neural network and EKF IEEE Trans. Ind. Electron. 57 12 2010 4178 4187
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.12 , pp. 4178-4187
    • Charkhgard, M.1    Farrokhi, M.2
  • 20
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • B. Saha, K. Goebel, S. Poll, and J. Christophersen Prognostics methods for battery health monitoring using a Bayesian framework IEEE Trans. Instr. Meas. 58 2009 291 296
    • (2009) IEEE Trans. Instr. Meas. , vol.58 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 23
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams, and D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Comput. 1 2 1989 270 280
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 24
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • A.K. Jain, and J. Mao Artificial neural networks: a tutorial Computer 29 3 1996 31 44
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2
  • 26
    • 0035366046 scopus 로고    scopus 로고
    • Methods for state-of-charge determination and their applications
    • S. Piller, M. Perrin, and A. Jossen Methods for state-of-charge determination and their applications J. Power Sources 96 2001 113 120
    • (2001) J. Power Sources , vol.96 , pp. 113-120
    • Piller, S.1    Perrin, M.2    Jossen, A.3
  • 27
    • 80053364885 scopus 로고    scopus 로고
    • Disassembly methodology for conducting failure analysis on lithium-ion batteries
    • N. Williard, B. Sood, M. Osterman, and M. Pecht Disassembly methodology for conducting failure analysis on lithium-ion batteries J. Material Sci. Material Electron. 22 2011 1616 1630
    • (2011) J. Material Sci. Material Electron. , vol.22 , pp. 1616-1630
    • Williard, N.1    Sood, B.2    Osterman, M.3    Pecht, M.4
  • 29
    • 0002991833 scopus 로고    scopus 로고
    • A review of impedance measurement for determination of state-of-charge or state-of-health of secondary battery
    • F. Huet A review of impedance measurement for determination of state-of-charge or state-of-health of secondary battery J. Power Sources 70 1998 59 69
    • (1998) J. Power Sources , vol.70 , pp. 59-69
    • Huet, F.1
  • 30
    • 0033891725 scopus 로고    scopus 로고
    • A review of state-of-charge indication of batteries by means of ac impedance measurements
    • S. Rodrigues, N. Munichandraiah, and A.K. Shukla A review of state-of-charge indication of batteries by means of ac impedance measurements J. Power Sources 87 2000 12 20
    • (2000) J. Power Sources , vol.87 , pp. 12-20
    • Rodrigues, S.1    Munichandraiah, N.2    Shukla, A.K.3
  • 31
    • 80053570039 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on Dempster CShafer theory and the Bayesian Monte Carlo method
    • W. He, N. Williard, M. Osterman, and M. Pecht Prognostics of lithium-ion batteries based on Dempster CShafer theory and the Bayesian Monte Carlo method J. Power Sources 196 2011 10314 10321
    • (2011) J. Power Sources , vol.196 , pp. 10314-10321
    • He, W.1    Williard, N.2    Osterman, M.3    Pecht, M.4
  • 32
    • 84855292180 scopus 로고    scopus 로고
    • A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
    • C. Hu, B.D. Youn, and J. Chung A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation Appl. Energy 92 2011 694 704
    • (2011) Appl. Energy , vol.92 , pp. 694-704
    • Hu, C.1    Youn, B.D.2    Chung, J.3
  • 33
    • 80053570039 scopus 로고    scopus 로고
    • State of charge estimation for electric vehicle batteries using unscented Kalman filtering
    • W. He, N. Williard, C.C. Chen, and M. Pecht State of charge estimation for electric vehicle batteries using unscented Kalman filtering Microelectron. Reliab. 196 2011 10314 10321
    • (2011) Microelectron. Reliab. , vol.196 , pp. 10314-10321
    • He, W.1    Williard, N.2    Chen, C.C.3    Pecht, M.4
  • 34
    • 0037665286 scopus 로고    scopus 로고
    • Battery monitoring and electrical energy management precondition for future vehicle electric power systems
    • E. Meissner, and G. Richter Battery monitoring and electrical energy management precondition for future vehicle electric power systems J. Power Sources 116 1-2 2013 79 98
    • (2013) J. Power Sources , vol.116 , Issue.12 , pp. 79-98
    • Meissner, E.1    Richter, G.2
  • 35
    • 84907176493 scopus 로고    scopus 로고
    • A generic model-free approach for lithium-ion battery health management
    • G. Bai, P. Wang, C. Hu, and M. Pecht A generic model-free approach for lithium-ion battery health management Appl. Energy 135 2014 247 260
    • (2014) Appl. Energy , vol.135 , pp. 247-260
    • Bai, G.1    Wang, P.2    Hu, C.3    Pecht, M.4
  • 36
    • 84901027260 scopus 로고    scopus 로고
    • Data-driven approach based on particle swarm optimization and K-nearest neighbor regression for estimating capacity of lithium-ion battery
    • C. Hu, G. Jain, P. Zhang, C. Schmidt, P. Gomadam, and T. Gorka Data-driven approach based on particle swarm optimization and K-nearest neighbor regression for estimating capacity of lithium-ion battery Appl. Energy 129 2014 49 55
    • (2014) Appl. Energy , vol.129 , pp. 49-55
    • Hu, C.1    Jain, G.2    Zhang, P.3    Schmidt, C.4    Gomadam, P.5    Gorka, T.6
  • 37
    • 84899570420 scopus 로고    scopus 로고
    • Method for estimating capacity and predicting remaining useful life of lithium-ion battery
    • C. Hu, G. Jain, P. Tamirisa, and T. Gorka Method for estimating capacity and predicting remaining useful life of lithium-ion battery Appl. Energy 126 2014 182 189
    • (2014) Appl. Energy , vol.126 , pp. 182-189
    • Hu, C.1    Jain, G.2    Tamirisa, P.3    Gorka, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.