메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 247-260

A generic model-free approach for lithium-ion battery health management

Author keywords

Artificial neural network; Battery; Health management; Kalman filter; State of charge; State of health

Indexed keywords

CHARGING (BATTERIES); ELECTRIC BATTERIES; EQUATIONS OF STATE; INFORMATION MANAGEMENT; KALMAN FILTERS; LITHIUM; LITHIUM ALLOYS; LITHIUM BATTERIES; NEURAL NETWORKS; SECONDARY BATTERIES;

EID: 84907176493     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.08.059     Document Type: Article
Times cited : (120)

References (44)
  • 1
    • 3142702292 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 1. Background
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 1. Background. J Power Sources 2004, 134(2004):252-261.
    • (2004) J Power Sources , vol.134 , Issue.2004 , pp. 252-261
    • Plett, G.L.1
  • 2
    • 80053364885 scopus 로고    scopus 로고
    • Disassembly methodology for conducting failure analysis on lithium-ion batteries
    • Williard N., Sood B., Osterman M., Pecht M. Disassembly methodology for conducting failure analysis on lithium-ion batteries. J Mater Sci: Mater Electron 2011, 22:1616-1630.
    • (2011) J Mater Sci: Mater Electron , vol.22 , pp. 1616-1630
    • Williard, N.1    Sood, B.2    Osterman, M.3    Pecht, M.4
  • 4
    • 0035366046 scopus 로고    scopus 로고
    • Methods for state-of-charge determination and their applications
    • Piller S., Perrin M., Jossen A. Methods for state-of-charge determination and their applications. J Power Source 2001, 96(2001):113-120.
    • (2001) J Power Source , vol.96 , Issue.2001 , pp. 113-120
    • Piller, S.1    Perrin, M.2    Jossen, A.3
  • 5
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • Zhang J., Lee J. A review on prognostics and health monitoring of Li-ion battery. J Power Source 2011, 196(2011):6007-6014.
    • (2011) J Power Source , vol.196 , Issue.2011 , pp. 6007-6014
    • Zhang, J.1    Lee, J.2
  • 8
    • 0002991833 scopus 로고    scopus 로고
    • A review of impedance measurement for determination of state-of-charge or state-of-health of secondary battery
    • Huet F. A review of impedance measurement for determination of state-of-charge or state-of-health of secondary battery. J Power Source 1998, 70(1998):59-69.
    • (1998) J Power Source , vol.70 , Issue.1998 , pp. 59-69
    • Huet, F.1
  • 9
    • 0033891725 scopus 로고    scopus 로고
    • A review of state-of-charge indication of batteries by means of ac impedance measurements
    • Rodrigues S., Munichandraiah N., Shukla A.K. A review of state-of-charge indication of batteries by means of ac impedance measurements. J Power Source 2000, 87(2000):12-20.
    • (2000) J Power Source , vol.87 , Issue.2000 , pp. 12-20
    • Rodrigues, S.1    Munichandraiah, N.2    Shukla, A.K.3
  • 11
    • 84879347106 scopus 로고    scopus 로고
    • Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
    • Proceedings, Anonymous
    • Kozlowski J Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques. In: 2003 IEEE Aerospace conference, Proceedings, Anonymous, vol. 7; 2003.
    • (2003) 2003 IEEE Aerospace conference , vol.7
    • Kozlowski, J.1
  • 12
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • Saha B., Goebel K., Poll S., Christophersen J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans Instrum Meas 2009, 58(2009):291-296.
    • (2009) IEEE Trans Instrum Meas , vol.58 , Issue.2009 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 13
    • 80053570039 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method
    • He W., Williard N., Osterman M., Pecht M. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Source 2011, 196(2011):10314-10321.
    • (2011) J Power Source , vol.196 , Issue.2011 , pp. 10314-10321
    • He, W.1    Williard, N.2    Osterman, M.3    Pecht, M.4
  • 14
    • 84899570420 scopus 로고    scopus 로고
    • Method for estimating capacity and predicting remaining useful life of lithium-ion battery
    • Hu C., Jain G., Tamirisa P., Gorka T. Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Appl Energy 2014, 126:182-189.
    • (2014) Appl Energy , vol.126 , pp. 182-189
    • Hu, C.1    Jain, G.2    Tamirisa, P.3    Gorka, T.4
  • 15
    • 84901027260 scopus 로고    scopus 로고
    • Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery
    • Hu C., Jain G., Zhang P., Schmidt C., Gomadam P., Gorka T. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl Energy 2014, 129:49-55.
    • (2014) Appl Energy , vol.129 , pp. 49-55
    • Hu, C.1    Jain, G.2    Zhang, P.3    Schmidt, C.4    Gomadam, P.5    Gorka, T.6
  • 16
    • 84861702168 scopus 로고    scopus 로고
    • Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries
    • Sun F., Xiong R., He H., Li W., Aussems J.E.E. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries. Appl Energy 2012, 96:378-386.
    • (2012) Appl Energy , vol.96 , pp. 378-386
    • Sun, F.1    Xiong, R.2    He, H.3    Li, W.4    Aussems, J.E.E.5
  • 17
    • 84870749739 scopus 로고    scopus 로고
    • Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application
    • Waag W., Ka¨bitz S., Sauer D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 2013, 102:885-897.
    • (2013) Appl Energy , vol.102 , pp. 885-897
    • Waag, W.1    Ka¨bitz, S.2    Sauer, D.U.3
  • 18
    • 84879273687 scopus 로고    scopus 로고
    • Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions
    • Miranda A´.G., Hong C.W. Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions. Appl Energy 2013, 111:681-689.
    • (2013) Appl Energy , vol.111 , pp. 681-689
    • Miranda, A.G.1    Hong, C.W.2
  • 19
    • 84869866120 scopus 로고    scopus 로고
    • A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
    • He Y., Liu X., Zhang C., Chen Z. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries. Appl Energy 2013, 101:808-814.
    • (2013) Appl Energy , vol.101 , pp. 808-814
    • He, Y.1    Liu, X.2    Zhang, C.3    Chen, Z.4
  • 20
    • 84878962836 scopus 로고    scopus 로고
    • 4 battery pack in hybrid electric vehicles using mean-difference model
    • 4 battery pack in hybrid electric vehicles using mean-difference model. Appl Energy 2013, 111:571-580.
    • (2013) Appl Energy , vol.111 , pp. 571-580
    • Zheng, Y.1    Ouyang, M.2    Lu, L.3    Li, J.4    Han, X.5    Xu, L.6
  • 21
    • 77955656142 scopus 로고    scopus 로고
    • Auxiliary health diagnosis method for lead-acid battery
    • Sun Y.-H., Jou H.-L., Wu J.-C., Wu K.-D. Auxiliary health diagnosis method for lead-acid battery. Appl Energy 2010, 87:3691-3698.
    • (2010) Appl Energy , vol.87 , pp. 3691-3698
    • Sun, Y.-H.1    Jou, H.-L.2    Wu, J.-C.3    Wu, K.-D.4
  • 22
    • 84909964433 scopus 로고    scopus 로고
    • Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source
    • Raza S.S., Janajreh I., Ghenai C. Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Appl Energy 2014.
    • (2014) Appl Energy
    • Raza, S.S.1    Janajreh, I.2    Ghenai, C.3
  • 23
    • 84857999516 scopus 로고    scopus 로고
    • Environmental consequences of the use of batteries in low carbon systems: the impact of battery production
    • McManus M.C. Environmental consequences of the use of batteries in low carbon systems: the impact of battery production. Appl Energy 2012, 93:288-295.
    • (2012) Appl Energy , vol.93 , pp. 288-295
    • McManus, M.C.1
  • 24
    • 84878551829 scopus 로고    scopus 로고
    • Reliability risk mitigation of free air cooling through prognostics and health management
    • Dai J., Das D., Ohadi M., Pecht M. Reliability risk mitigation of free air cooling through prognostics and health management. Appl Energy 2013, 111:104-112.
    • (2013) Appl Energy , vol.111 , pp. 104-112
    • Dai, J.1    Das, D.2    Ohadi, M.3    Pecht, M.4
  • 25
    • 84878509580 scopus 로고    scopus 로고
    • Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV
    • Bishop J.D.K., Axon C.J., Bonilla D., Tran M., Banister D., McCulloch M.D. Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV. Appl Energy 2013, 111:206-218.
    • (2013) Appl Energy , vol.111 , pp. 206-218
    • Bishop, J.D.K.1    Axon, C.J.2    Bonilla, D.3    Tran, M.4    Banister, D.5    McCulloch, M.D.6
  • 26
    • 3142752164 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification. J Power Sources 2004, 134(2004):262-276.
    • (2004) J Power Sources , vol.134 , Issue.2004 , pp. 262-276
    • Plett, G.L.1
  • 27
    • 3142674441 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 3. State and parameter estimation
    • Plett G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 3. State and parameter estimation. J Power Sources 2004, 134(2004):277-292.
    • (2004) J Power Sources , vol.134 , Issue.2004 , pp. 277-292
    • Plett, G.L.1
  • 28
    • 84855292180 scopus 로고    scopus 로고
    • A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
    • Hu C., Youn B.D., Chung J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 2011, 92:694-704.
    • (2011) Appl Energy , vol.92 , pp. 694-704
    • Hu, C.1    Youn, B.D.2    Chung, J.3
  • 29
    • 80053570039 scopus 로고    scopus 로고
    • State of charge estimation for electric vehicle batteries using unscented Kalman filtering
    • He W., Williard N., Chen C.C., Pecht M. State of charge estimation for electric vehicle batteries using unscented Kalman filtering. Microelectron Reliab 2011, 196(2011):10314-10321.
    • (2011) Microelectron Reliab , vol.196 , Issue.2011 , pp. 10314-10321
    • He, W.1    Williard, N.2    Chen, C.C.3    Pecht, M.4
  • 30
    • 84884725428 scopus 로고    scopus 로고
    • A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
    • Xiong R., Sun F., Gong X., Gao C. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles. Appl Energy 2014, 113:1421-1433.
    • (2014) Appl Energy , vol.113 , pp. 1421-1433
    • Xiong, R.1    Sun, F.2    Gong, X.3    Gao, C.4
  • 31
    • 80053320466 scopus 로고    scopus 로고
    • 4 batteries in electric vehicles
    • 4 batteries in electric vehicles. Appl Energy 2012, 89:413-420.
    • (2012) Appl Energy , vol.89 , pp. 413-420
    • He, H.1    Xiong, R.2    Guo, H.3
  • 32
    • 33646826833 scopus 로고    scopus 로고
    • Review of models for predicting the cycling performance of lithium ion batteries
    • Santhanagopalan S., Guo Q., Ramadass P., White R.E. Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 2006, 156(2):620-628.
    • (2006) J Power Sources , vol.156 , Issue.2 , pp. 620-628
    • Santhanagopalan, S.1    Guo, Q.2    Ramadass, P.3    White, R.E.4
  • 33
    • 33750953251 scopus 로고    scopus 로고
    • Online estimation of the state of charge of a lithium ion cell
    • Santhanagopalan S., White R.E. Online estimation of the state of charge of a lithium ion cell. J Power Sources 2006, 161(2):1346-1355.
    • (2006) J Power Sources , vol.161 , Issue.2 , pp. 1346-1355
    • Santhanagopalan, S.1    White, R.E.2
  • 34
    • 84878745510 scopus 로고    scopus 로고
    • Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
    • Waag W., Sauer D.U. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Appl Energy 2013, 111:416-427.
    • (2013) Appl Energy , vol.111 , pp. 416-427
    • Waag, W.1    Sauer, D.U.2
  • 35
    • 84859423588 scopus 로고    scopus 로고
    • Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications
    • Dai H., Wei X., Sun Z., Wang J., Gu W. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications. Appl Energy 2012, 95:227-237.
    • (2012) Appl Energy , vol.95 , pp. 227-237
    • Dai, H.1    Wei, X.2    Sun, Z.3    Wang, J.4    Gu, W.5
  • 36
    • 78349251330 scopus 로고    scopus 로고
    • State-of-charge estimation for lithium-ion batteries using neural network and EKF
    • Charkhgard M., Farrokhi M. State-of-charge estimation for lithium-ion batteries using neural network and EKF. IEEE Trans Ind Electron 2010, 57(12):4178-4187.
    • (2010) IEEE Trans Ind Electron , vol.57 , Issue.12 , pp. 4178-4187
    • Charkhgard, M.1    Farrokhi, M.2
  • 37
    • 0037665286 scopus 로고    scopus 로고
    • Battery monitoring and electrical energy management precondition for future vehicle electric power systems
    • Meissner E., Richter G. Battery monitoring and electrical energy management precondition for future vehicle electric power systems. J Power Source 2003.
    • (2003) J Power Source
    • Meissner, E.1    Richter, G.2
  • 38
    • 4243785501 scopus 로고    scopus 로고
    • State-of-charge - what do we really speak about?
    • Saucer DU, Bopp G, Jossen A. State-of-charge - what do we really speak about? INTELEC; 1999.
    • (1999) INTELEC
    • Saucer, D.U.1    Bopp, G.2    Jossen, A.3
  • 40
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1989, 1(2):270-280.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 41
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • Jain A.K., Mao J. Artificial neural networks: a tutorial. Computer 1996, 29(3):31-44.
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2
  • 43
    • 78649556991 scopus 로고    scopus 로고
    • Battery data set
    • NASA Ames Prognostics Data Repository, [<], NASA Ames, Moffett Field, CA
    • Saha B, Goebel K. Battery data set. NASA Ames Prognostics Data Repository, [<], NASA Ames, Moffett Field, CA; 2007. http://ti.arc.nasa.gov/project/prognostic-data-repository.
    • (2007)
    • Saha, B.1    Goebel, K.2
  • 44
    • 79955750805 scopus 로고    scopus 로고
    • An introduction to the Kalman filter"
    • Notes of ACM SIGGRAPH tutorial on the Kalman filter
    • Welch G, Bishop G. An introduction to the Kalman filter", Notes of ACM SIGGRAPH tutorial on the Kalman filter; 2001.
    • (2001)
    • Welch, G.1    Bishop, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.