메뉴 건너뛰기




Volumn 50, Issue 5, 2014, Pages 647-660

Relative cost curves: An alternative to AUC and an extension to 3-class problems

Author keywords

AUC; Classifier; Cost curves; Misclassification costs; Performance evaluation; ROC curves

Indexed keywords


EID: 84919485856     PISSN: 00235954     EISSN: 1805949X     Source Type: Journal    
DOI: 10.14736/kyb-2014-5-0647     Document Type: Article
Times cited : (3)

References (12)
  • 1
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997), 1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 2
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • C. Drummond and R. C. Holte: Cost curves: An improved method for visualizing classifier performance. Machine Learning 65 (2006) 95-130.
    • (2006) Machine Learning , vol.65 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 3
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett: An introduction to roc analysis. Pattern Recognition Lett. 27 (2006), 861-874.
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 4
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D. J. Hand: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77 (2009), 103-123.
    • (2009) Machine Learning , vol.77 , pp. 103-123
    • Hand, D.J.1
  • 5
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • D. J. Hand and R. J. Till: A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001), 171-186.
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 6
    • 0024443297 scopus 로고
    • Receiver operating characteristic (ROC) methodology: The state of the art
    • J. A. Hanley: Receiver operating characteristic (ROC) methodology: the state of the art. Critical Reviews in Diagnostic Imaging 29 (1989), 307-335.
    • (1989) Critical Reviews in Diagnostic Imaging , vol.29 , pp. 307-335
    • Hanley, J.A.1
  • 7
    • 80053456366 scopus 로고    scopus 로고
    • Brier curves: A new cost-based visualisation of classifier performance
    • (ICML-11) (L. Getoor and T. Scheffer, eds.), ACM, New York
    • J. Hernández-Orallo, P. Flach, and C. Ferri: Brier curves: a new cost-based visualisation of classifier performance. In: Proc. 28th International Conference on Machine Learning (ICML-11) (L. Getoor and T. Scheffer, eds.), ACM, New York 2011, pp. 585-592.
    • (2011) Proc. 28th International Conference on Machine Learning , pp. 585-592
    • Hernández-Orallo, J.1    Flach, P.2    Ferri, C.3
  • 8
    • 80455168539 scopus 로고    scopus 로고
    • An alternative to ROC and AUC analysis of classifiers
    • (J. Gama, E. Bradley, and J. Hollmén, eds.), Springer, Berlin
    • F. Klawonn, F. Höppner, and S. May: An alternative to ROC and AUC analysis of classifiers. In: Advances in Intelligent Data Analysis X, (J. Gama, E. Bradley, and J. Hollmén, eds.), Springer, Berlin 2011, p. 210-221.
    • (2011) Advances in Intelligent Data Analysis X , pp. 210-221
    • Klawonn, F.1    Höppner, F.2    May, S.3
  • 10
    • 45849137394 scopus 로고    scopus 로고
    • ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies
    • J. Li and J.P. Fine: ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. Biostatistics 9 (2008), 566-576.
    • (2008) Biostatistics , vol.9 , pp. 566-576
    • Li, J.1    Fine, J.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.