메뉴 건너뛰기




Volumn , Issue , 2014, Pages 41-48

Inferring depression and affect from application dependent meta knowledge

Author keywords

Affect recognition; Avec 2014; Depression recognition; Meta knowledge

Indexed keywords

AFFECT RECOGNITION; AUDIO-VISUAL DATA; AVEC 2014; CLASSIFICATION RESULTS; DEPRESSION RECOGNITION; META-KNOWLEDGE; PERFORMANCE MEASURE; STATISTICAL FEATURES;

EID: 84919360066     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2661806.2661813     Document Type: Conference Paper
Times cited : (39)

References (61)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Mach. Learn., 45(1):5-32, 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 84865734075 scopus 로고    scopus 로고
    • Joint robust voicing detection and pitch estimation based on residual harmonics
    • T. Drugman and A. Alwan. Joint robust voicing detection and pitch estimation based on residual harmonics. In Interspeech, 2011.
    • (2011) Interspeech
    • Drugman, T.1    Alwan, A.2
  • 4
    • 84857425012 scopus 로고    scopus 로고
    • Studying self-and active-training methods for multi-feature set emotion recognition
    • J. Esparza, S. Scherer, and F. Schwenker. Studying self-and active-training methods for multi-feature set emotion recognition. In Partially Supervised Learning, pages 19-31. 2012.
    • (2012) Partially Supervised Learning , pp. 19-31
    • Esparza, J.1    Scherer, S.2    Schwenker, F.3
  • 5
    • 84867662117 scopus 로고    scopus 로고
    • Recognizing human activities using a layered markov architecture
    • volume 7552 of LNCS, Springer
    • M. Glodek, G. Layher, F. Schwenker, and G. Palm. Recognizing human activities using a layered Markov architecture. In Proc. of ICANN, volume 7552 of LNCS, pages 677-684. Springer, 2012.
    • (2012) Proc. of ICANN , pp. 677-684
    • Glodek, M.1    Layher, G.2    Schwenker, F.3    Palm, G.4
  • 6
    • 84892929459 scopus 로고    scopus 로고
    • Kalman filter based classifier fusion for affective state recognition
    • volume 7872 of LNCS, Springer
    • M. Glodek, S. Reuter, M. Schels, K. Dietmayer, and F. Schwenker. Kalman filter based classifier fusion for affective state recognition. In Proc. of MCS, volume 7872 of LNCS, pages 85-94. Springer, 2013.
    • (2013) Proc. of MCS , pp. 85-94
    • Glodek, M.1    Reuter, S.2    Schels, M.3    Dietmayer, K.4    Schwenker, F.5
  • 7
    • 84874562869 scopus 로고    scopus 로고
    • Multi-modal fusion based on classification using rejection option and markov fusion networks
    • IEEE
    • M. Glodek, M. Schels, G. Palm, and F. Schwenker. Multi-modal fusion based on classification using rejection option and Markov fusion networks. In Proc. of ICPR, pages 1084-1087. IEEE, 2012.
    • (2012) Proc. of ICPR , pp. 1084-1087
    • Glodek, M.1    Schels, M.2    Palm, G.3    Schwenker, F.4
  • 8
    • 84870155552 scopus 로고    scopus 로고
    • Multiple classifier combination using reject options and markov fusion networks
    • ACM
    • M. Glodek, M. Schels, G. Palm, and F. Schwenker. Multiple classifier combination using reject options and markov fusion networks. In Proc. of ICMI, pages 465-472. ACM, 2012.
    • (2012) Proc. of ICMI , pp. 465-472
    • Glodek, M.1    Schels, M.2    Palm, G.3    Schwenker, F.4
  • 9
    • 84908097374 scopus 로고    scopus 로고
    • Combination of sequential class distributions from multiple channels using markov fusion networks
    • M. Glodek, M. Schels, F. Schwenker, and G. Palm. Combination of sequential class distributions from multiple channels using markov fusion networks. JMUI, pages 1-16, 2014.
    • (2014) JMUI , pp. 1-16
    • Glodek, M.1    Schels, M.2    Schwenker, F.3    Palm, G.4
  • 10
    • 84855399019 scopus 로고    scopus 로고
    • Conditioned hidden markov model fusion for multimodal classification
    • ISCA
    • M. Glodek, S. Scherer, and F. Schwenker. Conditioned hidden Markov model fusion for multimodal classification. In Interspeech, pages 2269-2272. ISCA, 2011.
    • (2011) Interspeech , pp. 2269-2272
    • Glodek, M.1    Scherer, S.2    Schwenker, F.3
  • 12
    • 78049369750 scopus 로고    scopus 로고
    • Semi-supervised facial expressions annotation using co-training with fast probabilistic tri-class svms
    • K. I. Diamantaras, W. Duch, and L. S. Iliadis, editors, LNCS 6353, Springer
    • M. F. A. Hady, M. Schels, F. Schwenker, and G. Palm. Semi-supervised facial expressions annotation using co-training with fast probabilistic tri-class svms. In K. I. Diamantaras, W. Duch, and L. S. Iliadis, editors, Proc. of ICANN, LNCS 6353, pages 70-75. Springer, 2010.
    • (2010) Proc. of ICANN , pp. 70-75
    • Hady, M.F.A.1    Schels, M.2    Schwenker, F.3    Palm, G.4
  • 13
  • 16
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Nov.
    • S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780, Nov. 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 18
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667):78-80, 2004.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 19
    • 84902358176 scopus 로고    scopus 로고
    • Fusion of audio-visual features using hierarchical classifier systems for the recognition of afiective states and the state of depression
    • M. Kächele, M. Glodek, D. Zharkov, S. Meudt, and F. Schwenker. Fusion of audio-visual features using hierarchical classifier systems for the recognition of afiective states and the state of depression. In Proc. of ICPRAM, pages 671-678, 2014.
    • (2014) Proc. of ICPRAM , pp. 671-678
    • Kächele, M.1    Glodek, M.2    Zharkov, D.3    Meudt, S.4    Schwenker, F.5
  • 21
    • 84890861989 scopus 로고    scopus 로고
    • Semi-supervised dictionary learning of sparse representations for emotion recognition
    • LNCS
    • M. Kächele and F. Schwenker. Semi-supervised dictionary learning of sparse representations for emotion recognition. In Partially Supervised Learning, LNCS, pages 21-35, 2013.
    • (2013) Partially Supervised Learning , pp. 21-35
    • Kächele, M.1    Schwenker, F.2
  • 22
    • 84910095079 scopus 로고    scopus 로고
    • Cascaded fusion of dynamic, spatial, and textural feature sets for person-independent facial emotion recognition
    • M. Kächele and F. Schwenker. Cascaded fusion of dynamic, spatial, and textural feature sets for person-independent facial emotion recognition. In Proc. of ICPR, page (to appear), 2014.
    • (2014) Proc. of ICPR
    • Kächele, M.1    Schwenker, F.2
  • 23
    • 84910051360 scopus 로고    scopus 로고
    • Majority-class aware support vector domain oversampling for imbalanced classification problems
    • volume 8774 of LNCS, Springer Berlin Heidelberg
    • M. Kächele, P. Thiam, G. Palm, and F. Schwenker. Majority-class aware support vector domain oversampling for imbalanced classification problems. In Artificial Neural Networks in Pattern Recognition, volume 8774 of LNCS, pages 83-92. Springer Berlin Heidelberg, 2014.
    • (2014) Artificial Neural Networks in Pattern Recognition , pp. 83-92
    • Kächele, M.1    Thiam, P.2    Palm, G.3    Schwenker, F.4
  • 24
    • 84918807880 scopus 로고    scopus 로고
    • Prosodic, spectral and voice quality feature selection using a long-term stopping criterion for audio-based emotion recognition
    • M. Kächele, D. Zharkov, S. Meudt, and F. Schwenker. Prosodic, spectral and voice quality feature selection using a long-term stopping criterion for audio-based emotion recognition. In Proc. of ICPR, page (to appear), 2014.
    • (2014) Proc. of ICPR
    • Kächele, M.1    Zharkov, D.2    Meudt, S.3    Schwenker, F.4
  • 25
    • 56649124649 scopus 로고    scopus 로고
    • Emotion recognition based on physiological changes in music listening
    • J. Kim and E. André. Emotion recognition based on physiological changes in music listening. Transactions on Pattern Analysis and Machine Intelligence, 30(12):2067-2083, 2008.
    • (2008) Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.12 , pp. 2067-2083
    • Kim, J.1    André, E.2
  • 29
    • 84870182431 scopus 로고    scopus 로고
    • Posing personality: Is it possible to enact the big five traits in photographs?
    • S. Leikas, M. Verkasalo, and J.-E. Lönnqvist. Posing personality: Is it possible to enact the big five traits in photographs? Journal of Research in Personality, 47(1):15 - 21, 2013.
    • (2013) Journal of Research in Personality , vol.47 , Issue.1 , pp. 15-21
    • Leikas, S.1    Verkasalo, M.2    Lönnqvist, J.-E.3
  • 30
    • 84867642392 scopus 로고    scopus 로고
    • ATLAS - an annotation tool for HCI data utilizing machine learning methods
    • S. Meudt, L. Bigalke, and F. Schwenker. ATLAS - an annotation tool for HCI data utilizing machine learning methods. In Proc. of APD'12, pages 5347-5352, 2012.
    • (2012) Proc. of APD'12 , pp. 5347-5352
    • Meudt, S.1    Bigalke, L.2    Schwenker, F.3
  • 31
    • 84867629933 scopus 로고    scopus 로고
    • On instance selection in audio based emotion recognition
    • S. Meudt and F. Schwenker. On instance selection in audio based emotion recognition. In Proc. ANNPR'12, pages 186-192, 2012.
    • (2012) Proc. ANNPR'12 , pp. 186-192
    • Meudt, S.1    Schwenker, F.2
  • 32
    • 84892570615 scopus 로고    scopus 로고
    • Multi classifier systems and forward backward feature selection algorithms to classify emotional coloured speech
    • S. Meudt, D. Zharkov, M. Kächele, and F. Schwenker. Multi classifier systems and forward backward feature selection algorithms to classify emotional coloured speech. In Proc. of ICMI, pages 551-556, 2013.
    • (2013) Proc. of ICMI , pp. 551-556
    • Meudt, S.1    Zharkov, D.2    Kächele, M.3    Schwenker, F.4
  • 34
    • 0242721417 scopus 로고    scopus 로고
    • Speech emotion recognition using hidden markov models
    • T. L. Nwe, S. W. Foo, and L. C. De Silva. Speech emotion recognition using hidden markov models. Speech communication, 41(4):603-623, 2003.
    • (2003) Speech Communication , vol.41 , Issue.4 , pp. 603-623
    • Nwe, T.L.1    Foo, S.W.2    Da Silva, L.C.3
  • 37
    • 84881512394 scopus 로고    scopus 로고
    • Introducing the recola multimodal corpus of remote collaborative and affective interactions
    • F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. Introducing the recola multimodal corpus of remote collaborative and affective interactions. In Proc. of IEEE FG, pages 1-8, 2013.
    • (2013) Proc. of IEEE FG , pp. 1-8
    • Ringeval, F.1    Sonderegger, A.2    Sauer, J.3    Lalanne, D.4
  • 38
    • 84978876350 scopus 로고    scopus 로고
    • Last minute: A multimodal corpus of speech-based user-companion interactions
    • may
    • D. Rösner, J. Frommer, R. Friesen, M. Haase, J. Lange, and M. Otto. Last minute: A multimodal corpus of speech-based user-companion interactions. In Proc. LREC'12, pages 2559-2566, may 2012.
    • (2012) Proc. LREC'12 , pp. 2559-2566
    • Rösner, D.1    Frommer, J.2    Friesen, R.3    Haase, M.4    Lange, J.5    Otto, M.6
  • 39
    • 4644280844 scopus 로고
    • A circumplex model of affect
    • J. A. Russell. A circumplex model of affect. JPSP, 39(6):1161-1178, 1980.
    • (1980) JPSP , vol.39 , Issue.6 , pp. 1161-1178
    • Russell, J.A.1
  • 43
    • 84902366569 scopus 로고    scopus 로고
    • Using unlabeled data to improve classification of emotional states in human computer interaction
    • M. Schels, M. Kachele, M. Glodek, D. Hrabal, S. Walter, and F. Schwenker. Using unlabeled data to improve classification of emotional states in human computer interaction. JMUI, 8(1):5-16, 2014.
    • (2014) JMUI , vol.8 , Issue.1 , pp. 5-16
    • Schels, M.1    Kachele, M.2    Glodek, M.3    Hrabal, D.4    Walter, S.5    Schwenker, F.6
  • 44
    • 84857401318 scopus 로고    scopus 로고
    • Classification of emotional states in a woz scenario exploiting labeled and unlabeled bio-physiological data
    • Springer
    • M. Schels, M. Kachele, D. Hrabal, S. Walter, H. C. Traue, and F. Schwenker. Classification of emotional states in a woz scenario exploiting labeled and unlabeled bio-physiological data. In Proc. of Partially Supervised Learning, pages 138-147. Springer, 2012.
    • (2012) Proc. of Partially Supervised Learning , pp. 138-147
    • Schels, M.1    Kachele, M.2    Hrabal, D.3    Walter, S.4    Traue, H.C.5    Schwenker, F.6
  • 47
    • 0345525831 scopus 로고    scopus 로고
    • Handbook of affective sciences - vocal expression of emotion
    • chapter 23, Oxford University Press
    • K. R. Scherer, T. Johnstone, and G. Klasmeyer. Handbook of Affective Sciences - Vocal expression of emotion, chapter 23, pages 433-456. Affective Science. Oxford University Press, 2003.
    • (2003) Affective Science , pp. 433-456
    • Scherer, K.R.1    Johnstone, T.2    Klasmeyer, G.3
  • 48
    • 84867881882 scopus 로고    scopus 로고
    • A generic framework for the inference of user states in human computer interaction: How patterns of low level communicational cues support complex affective states
    • S. Scherer, M. Glodek, G. Layher, M. Schels, M. Schmidt, T. Brosch, S. Tschechne, F. Schwenker, H. Neumann, and G. Palm. A generic framework for the inference of user states in human computer interaction: How patterns of low level communicational cues support complex affective states. JMUI, pages 117-141, 2012.
    • (2012) JMUI , pp. 117-141
    • Scherer, S.1    Glodek, M.2    Layher, G.3    Schels, M.4    Schmidt, M.5    Brosch, T.6    Tschechne, S.7    Schwenker, F.8    Neumann, H.9    Palm, G.10
  • 49
    • 84983561587 scopus 로고    scopus 로고
    • Spotting laughter in natural multiparty conversations: A comparison of automatic online and offine approaches using audiovisual data
    • S. Scherer, M. Glodek, F. Schwenker, N. Campbell, and G. Palm. Spotting laughter in natural multiparty conversations: A comparison of automatic online and offine approaches using audiovisual data. ACM Transactions on Interactive Intelligent Systems, 2(1):1-31, 2012.
    • (2012) ACM Transactions on Interactive Intelligent Systems , vol.2 , Issue.1 , pp. 1-31
    • Scherer, S.1    Glodek, M.2    Schwenker, F.3    Campbell, N.4    Palm, G.5
  • 50
    • 77952330714 scopus 로고    scopus 로고
    • A hidden markov model based approach for facial expression recognition in image sequences
    • LNAI 5998, Springer
    • M. Schmidt, M. Schels, and F. Schwenker. A hidden markov model based approach for facial expression recognition in image sequences. In Proc. of ANNPR'10, LNAI 5998, pages 149-160. Springer, 2010.
    • (2010) Proc. of ANNPR'10 , pp. 149-160
    • Schmidt, M.1    Schels, M.2    Schwenker, F.3
  • 54
    • 84891629945 scopus 로고    scopus 로고
    • Pattern classification and clustering: A review of partially supervised learning approaches
    • F. Schwenker and E. Trentin. Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recognition Letters, 37:4-14, 2014.
    • (2014) Pattern Recognition Letters , vol.37 , pp. 4-14
    • Schwenker, F.1    Trentin, E.2
  • 57
    • 84884941352 scopus 로고    scopus 로고
    • A biologically inspired model for the detection of external and internal head motions
    • LNCS 8131
    • S. Tschechne, G. Layher, and H. Neumann. A Biologically Inspired Model for the Detection of External and Internal Head Motions. In Proc. of ICANN, LNCS 8131, pages 232-239, 2013.
    • (2013) Proc. of ICANN , pp. 232-239
    • Tschechne, S.1    Layher, G.2    Neumann, H.3
  • 61
    • 84886418479 scopus 로고    scopus 로고
    • Lstm-modeling of continuous emotions in an audiovisual affect recognition framework
    • M. Wöllmer, M. Kaiser, F. Eyben, B. Schuller, and G. Rigoll. LSTM-modeling of continuous emotions in an audiovisual affect recognition framework. Image and Vision Computing, 31(2):153 - 163, 2013.
    • (2013) Image and Vision Computing , vol.31 , Issue.2 , pp. 153-163
    • Wöllmer, M.1    Kaiser, M.2    Eyben, F.3    Schuller, B.4    Rigoll, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.