메뉴 건너뛰기




Volumn 22, Issue 1, 2015, Pages 115-131

Enumeration Index Performance in Generalized Growth Mixture Models: A Monte Carlo Test of Muthén’s (2003) Hypothesis

Author keywords

enumeration index; growth mixture modeling; population heterogeneity

Indexed keywords

INTELLIGENT SYSTEMS; MIXTURES; MONTE CARLO METHODS; SAMPLING; TRAJECTORIES;

EID: 84918585020     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2014.919823     Document Type: Article
Times cited : (33)

References (51)
  • 1
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • doi:
    • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332. doi:10.1007/BF02294359
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 2
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes
    • doi:
    • Bauer, D. J., & Curran, P. J. (2003a). Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes. Psychological Methods, 8, 338–363. doi:10.1037/1082-989X.8.3.338
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 3
    • 0142136680 scopus 로고    scopus 로고
    • Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003)
    • doi:
    • Bauer, D. J., & Curran, P. J. (2003b). Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003). Psychological Methods, 8, 384–393. doi:10.1037/1082-989X.8.3.384
    • (2003) Psychological Methods , vol.8 , pp. 384-393
    • Bauer, D.J.1    Curran, P.J.2
  • 4
    • 1942507464 scopus 로고    scopus 로고
    • The integration of continuous and discrete latent variable models: Potential problems and promising opportunities
    • doi:
    • Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29. doi:10.1037/1082-989X.9.1.3
    • (2004) Psychological Methods , vol.9 , pp. 3-29
    • Bauer, D.J.1    Curran, P.J.2
  • 6
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C., & Govaert, G. (1997). Using the classification likelihood to choose the number of clusters. Computing Science and Statistics, 29, 451–457.
    • (1997) Computing Science and Statistics , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 7
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • doi:
    • Binder, D. (1978). Bayesian cluster analysis. Biometrika, 65, 31–38. doi:10.1093/biomet/65.1.31
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.1
  • 9
    • 34250108028 scopus 로고
    • Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions
    • doi:
    • Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370. doi:10.1007/BF02294361
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 10
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • doi:
    • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195–212. doi:10.1007/BF01246098
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 11
    • 79958840182 scopus 로고    scopus 로고
    • Alcohol use trajectories and problem drinking over the course of adolescence: A study of North American indigenous youth and their caretakers
    • doi:
    • Cheadle, J. E., & Whitbeck, L. B. (2011). Alcohol use trajectories and problem drinking over the course of adolescence: A study of North American indigenous youth and their caretakers. Journal of Health and Social Behavior, 52, 228–245. doi:10.1177/0022146510393973
    • (2011) Journal of Health and Social Behavior , vol.52 , pp. 228-245
    • Cheadle, J.E.1    Whitbeck, L.B.2
  • 12
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • doi:
    • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037/1082-989X.6.4.330
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 13
    • 0142104914 scopus 로고    scopus 로고
    • A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003)
    • doi:
    • Cudeck, R., & Henly, S. J. (2003). A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003). Psychological Methods, 8, 378–383. doi:10.1037/1082-989X.8.3.378
    • (2003) Psychological Methods , vol.8 , pp. 378-383
    • Cudeck, R.1    Henly, S.J.2
  • 14
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, 57, 45–97.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 45-97
    • Draper, D.1
  • 16
    • 81155159645 scopus 로고    scopus 로고
    • Heterogeneity in clinical presentations of posttraumatic stress disorder among medical patients: Testing factor structure variation using factor mixture modeling
    • doi:
    • Elhai, J. D., Naifeh, J. A., Forbes, D., Ractliffe, K. C., & Tamburrino, M. (2011). Heterogeneity in clinical presentations of posttraumatic stress disorder among medical patients: Testing factor structure variation using factor mixture modeling. Journal of Traumatic Stress, 24, 435–443. doi:10.1002/jts.20653
    • (2011) Journal of Traumatic Stress , vol.24 , pp. 435-443
    • Elhai, J.D.1    Naifeh, J.A.2    Forbes, D.3    Ractliffe, K.C.4    Tamburrino, M.5
  • 17
    • 41149108168 scopus 로고    scopus 로고
    • The impact of miss-specifying class-specific residual variances in growth mixture models
    • doi:
    • Enders, C. K., & Tofighi, D. (2008). The impact of miss-specifying class-specific residual variances in growth mixture models. Structural Equation Modeling, 15, 75–95. doi:10.1080/10705510701758281
    • (2008) Structural Equation Modeling , vol.15 , pp. 75-95
    • Enders, C.K.1    Tofighi, D.2
  • 18
    • 0011567449 scopus 로고
    • A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions
    • doi:
    • Everitt, B. S. (1981). A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions. Multivariate Behavioral Research, 16, 171–180. doi:10.1207/s15327906mbr1602_3
    • (1981) Multivariate Behavioral Research , vol.16 , pp. 171-180
    • Everitt, B.S.1
  • 20
    • 33745601740 scopus 로고    scopus 로고
    • Local solutions in the estimation of growth mixture models
    • doi:
    • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36–53. doi:10.1037/1082-989X.11.1.36
    • (2006) Psychological Methods , vol.11 , pp. 36-53
    • Hipp, J.R.1    Bauer, D.J.2
  • 21
    • 79957803232 scopus 로고    scopus 로고
    • A longitudinal investigation of motivation and secondary school achievement using growth mixture modeling
    • doi:
    • Hodis, F. A., Meyer, L. H., McClure, J., Weir, K. F., & Walkey, F. H. (2011). A longitudinal investigation of motivation and secondary school achievement using growth mixture modeling. Journal of Educational Psychology, 103, 312–323. doi:10.1037/a0022547
    • (2011) Journal of Educational Psychology , vol.103 , pp. 312-323
    • Hodis, F.A.1    Meyer, L.H.2    McClure, J.3    Weir, K.F.4    Walkey, F.H.5
  • 22
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • doi:
    • Hurvich, C. M., & Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307. doi:10.1093/biomet/76.2.297
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.2
  • 23
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • doi:
    • Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778. doi:10.1093/biomet/88.3.767
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.2    Rubin, D.3
  • 24
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • doi:
    • Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39. doi:10.1037/1082-989X.10.1.21
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.2
  • 25
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
    • doi:
    • Lubke, G. H., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 26–47. doi:10.1080/10705510709336735
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.H.1    Muthén, B.2
  • 26
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • doi:
    • Lubke, G., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41, 499–532. doi:10.1207/s15327906mbr4104_4
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.1    Neale, M.C.2
  • 29
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36, 318–324.
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 31
    • 34249962132 scopus 로고
    • Latent curve analysis
    • doi:
    • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122. doi:10.1007/BF02294746
    • (1990) Psychometrika , vol.55 , pp. 107-122
    • Meredith, W.1    Tisak, J.2
  • 32
    • 58149368765 scopus 로고
    • The unicorn, the normal curve, and other improbable creatures
    • doi:
    • Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166. doi:10.1037/0033-2909.105.1.156
    • (1989) Psychological Bulletin , vol.105 , pp. 156-166
    • Micceri, T.1
  • 33
    • 0142136682 scopus 로고    scopus 로고
    • Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003)
    • doi:
    • Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8, 369–377. doi:10.1037/1082-989X.8.3.369
    • (2003) Psychological Methods , vol.8 , pp. 369-377
    • Muthén, B.1
  • 34
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • Kaplan D., (ed), Ed., Newbury Park, CA: Sage
    • Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345–368). Newbury Park, CA: Sage.
    • (2004) Handbook of quantitative methodology for the social sciences , pp. 345-368
    • Muthén, B.O.1
  • 35
    • 0034020646 scopus 로고    scopus 로고
    • The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample
    • Muthén, B. O., & Muthén, L. K. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290–300.
    • (2000) Journal of Studies on Alcohol , vol.61 , pp. 290-300
    • Muthén, B.O.1    Muthén, L.K.2
  • 36
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.O.1    Shedden, K.2
  • 38
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: A semi-parametric, group-based approach
    • doi:
    • Nagin, D. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139–157. doi:10.1037/1082-989X.4.2.139
    • (1999) Psychological Methods , vol.4 , pp. 139-157
    • Nagin, D.1
  • 39
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • doi:
    • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569. doi:10.1080/10705510701575396
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 41
    • 0038525564 scopus 로고    scopus 로고
    • Monte Carlo experiments: Design and implementation
    • doi:
    • Paxton, P., Curran, P. J., Bollen, K. A., & Kirby, J. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling, 8, 287–312. doi:10.1207/S15328007SEM0802_7
    • (2001) Structural Equation Modeling , vol.8 , pp. 287-312
    • Paxton, P.1    Curran, P.J.2    Bollen, K.A.3    Kirby, J.4
  • 42
    • 77957244188 scopus 로고    scopus 로고
    • General growth mixture analysis with antecedents and consequences of change
    • doi:
    • Petras, H., & Masyn, K. (2010). General growth mixture analysis with antecedents and consequences of change. Handbook of Quantitative Criminology, 1, 69–100. doi:10.1007/978-0-387-77650-7_5
    • (2010) Handbook of Quantitative Criminology , vol.1 , pp. 69-100
    • Petras, H.1    Masyn, K.2
  • 44
    • 84861591786 scopus 로고    scopus 로고
    • How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM’s performance characteristics
    • Peugh, J. L., & Fan, X. (2012). How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM’s performance characteristics. Structural Equation Modeling, 19, 204–226.
    • (2012) Structural Equation Modeling , vol.19 , pp. 204-226
    • Peugh, J.L.1    Fan, X.2
  • 45
    • 0142041439 scopus 로고    scopus 로고
    • Mixture or homogeneous? Comment on Bauer and Curran (2003)
    • doi:
    • Rindskopf, D. (2003). Mixture or homogeneous? Comment on Bauer and Curran (2003). Psychological Methods, 8, 364–368. doi:10.1037/1082-989X.8.3.364
    • (2003) Psychological Methods , vol.8 , pp. 364-368
    • Rindskopf, D.1
  • 46
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 47
    • 0000386489 scopus 로고
    • Application of model-selection criteria to some problems in multivariate analysis
    • Sclove, L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
    • (1987) Psychometrika , vol.52 , pp. 333-343
    • Sclove, L.1
  • 48
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in growth mixture models (pp. 317–341)
    • Hancock G. R., Samuelsen K. M., (eds), Eds., Charlotte, NC: Information Age
    • Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models (pp. 317–341). In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Charlotte, NC: Information Age.
    • (2008) Advances in latent variable mixture models(pp. 317–341)
    • Tofighi, D.1    Enders, C.K.2
  • 49
    • 78651288714 scopus 로고    scopus 로고
    • Addressing the problem of switched class labels in latent variable mixture model simulation studies
    • doi:
    • Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18, 110–131. doi:10.1080/10705511.2011.534695
    • (2011) Structural Equation Modeling , vol.18 , pp. 110-131
    • Tueller, S.J.1    Drotar, S.2    Lubke, G.H.3
  • 50
    • 34548536809 scopus 로고    scopus 로고
    • Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data
    • doi:
    • Wang, M., & Bodner, T. E. (2007). Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10, 635–656. doi:10.1177/1094428106289397
    • (2007) Organizational Research Methods , vol.10 , pp. 635-656
    • Wang, M.1    Bodner, T.E.2
  • 51
    • 26444483914 scopus 로고    scopus 로고
    • Evaluating latent class analyses in qualitative phenotype identification
    • doi:
    • Yang, C. (2006). Evaluating latent class analyses in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 1090–1104. doi:10.1016/j.csda.2004.11.004
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 1090-1104
    • Yang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.