-
1
-
-
33845722419
-
Factor analysis and AIC
-
doi:
-
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332. doi:10.1007/BF02294359
-
(1987)
Psychometrika
, vol.52
, pp. 317-332
-
-
Akaike, H.1
-
2
-
-
0142041441
-
Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes
-
doi:
-
Bauer, D. J., & Curran, P. J. (2003a). Distributional assumptions of growth mixture models: Implications for over-extraction of latent classes. Psychological Methods, 8, 338–363. doi:10.1037/1082-989X.8.3.338
-
(2003)
Psychological Methods
, vol.8
, pp. 338-363
-
-
Bauer, D.J.1
Curran, P.J.2
-
3
-
-
0142136680
-
Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003)
-
doi:
-
Bauer, D. J., & Curran, P. J. (2003b). Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003). Psychological Methods, 8, 384–393. doi:10.1037/1082-989X.8.3.384
-
(2003)
Psychological Methods
, vol.8
, pp. 384-393
-
-
Bauer, D.J.1
Curran, P.J.2
-
4
-
-
1942507464
-
The integration of continuous and discrete latent variable models: Potential problems and promising opportunities
-
doi:
-
Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29. doi:10.1037/1082-989X.9.1.3
-
(2004)
Psychological Methods
, vol.9
, pp. 3-29
-
-
Bauer, D.J.1
Curran, P.J.2
-
5
-
-
0034228914
-
Assessing a mixture model for clustering with the integrated completed likelihood
-
doi:
-
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 719–725. doi:10.1109/34.865189
-
(2000)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.22
, pp. 719-725
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
6
-
-
0000308948
-
Using the classification likelihood to choose the number of clusters
-
Biernacki, C., & Govaert, G. (1997). Using the classification likelihood to choose the number of clusters. Computing Science and Statistics, 29, 451–457.
-
(1997)
Computing Science and Statistics
, vol.29
, pp. 451-457
-
-
Biernacki, C.1
Govaert, G.2
-
7
-
-
85042555546
-
Bayesian cluster analysis
-
doi:
-
Binder, D. (1978). Bayesian cluster analysis. Biometrika, 65, 31–38. doi:10.1093/biomet/65.1.31
-
(1978)
Biometrika
, vol.65
, pp. 31-38
-
-
Binder, D.1
-
9
-
-
34250108028
-
Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions
-
doi:
-
Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370. doi:10.1007/BF02294361
-
(1987)
Psychometrika
, vol.52
, pp. 345-370
-
-
Bozdogan, H.1
-
10
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
doi:
-
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195–212. doi:10.1007/BF01246098
-
(1996)
Journal of Classification
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromenho, G.2
-
11
-
-
79958840182
-
Alcohol use trajectories and problem drinking over the course of adolescence: A study of North American indigenous youth and their caretakers
-
doi:
-
Cheadle, J. E., & Whitbeck, L. B. (2011). Alcohol use trajectories and problem drinking over the course of adolescence: A study of North American indigenous youth and their caretakers. Journal of Health and Social Behavior, 52, 228–245. doi:10.1177/0022146510393973
-
(2011)
Journal of Health and Social Behavior
, vol.52
, pp. 228-245
-
-
Cheadle, J.E.1
Whitbeck, L.B.2
-
12
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
doi:
-
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037/1082-989X.6.4.330
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
13
-
-
0142104914
-
A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003)
-
doi:
-
Cudeck, R., & Henly, S. J. (2003). A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003). Psychological Methods, 8, 378–383. doi:10.1037/1082-989X.8.3.378
-
(2003)
Psychological Methods
, vol.8
, pp. 378-383
-
-
Cudeck, R.1
Henly, S.J.2
-
14
-
-
0002276308
-
Assessment and propagation of model uncertainty
-
Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, 57, 45–97.
-
(1995)
Journal of the Royal Statistical Society
, vol.57
, pp. 45-97
-
-
Draper, D.1
-
15
-
-
82055165939
-
Identification of distinct depressive symptom trajectories in women following surgery for breast cancer
-
July 4, doi:
-
Dunn, L. B., Cooper, B. A., Neuhaus, J., West, C., Paul, S., Aouizerat, B., Abrams, G., Edrington, J., Hamolsky, D., & Miaskowski, C. (2011, July 4). Identification of distinct depressive symptom trajectories in women following surgery for breast cancer. Health Psycholog, 30, 683–692. doi:10.1037/a0024366
-
(2011)
Health Psycholog
, vol.30
, pp. 683-692
-
-
Dunn, L.B.1
Cooper, B.A.2
Neuhaus, J.3
West, C.4
Paul, S.5
Aouizerat, B.6
Abrams, G.7
Edrington, J.8
Hamolsky, D.9
Miaskowski, C.10
-
16
-
-
81155159645
-
Heterogeneity in clinical presentations of posttraumatic stress disorder among medical patients: Testing factor structure variation using factor mixture modeling
-
doi:
-
Elhai, J. D., Naifeh, J. A., Forbes, D., Ractliffe, K. C., & Tamburrino, M. (2011). Heterogeneity in clinical presentations of posttraumatic stress disorder among medical patients: Testing factor structure variation using factor mixture modeling. Journal of Traumatic Stress, 24, 435–443. doi:10.1002/jts.20653
-
(2011)
Journal of Traumatic Stress
, vol.24
, pp. 435-443
-
-
Elhai, J.D.1
Naifeh, J.A.2
Forbes, D.3
Ractliffe, K.C.4
Tamburrino, M.5
-
17
-
-
41149108168
-
The impact of miss-specifying class-specific residual variances in growth mixture models
-
doi:
-
Enders, C. K., & Tofighi, D. (2008). The impact of miss-specifying class-specific residual variances in growth mixture models. Structural Equation Modeling, 15, 75–95. doi:10.1080/10705510701758281
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 75-95
-
-
Enders, C.K.1
Tofighi, D.2
-
18
-
-
0011567449
-
A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions
-
doi:
-
Everitt, B. S. (1981). A Monte Carlo investigation of the likelihood ratio test for the number of components in a mixture of normal distributions. Multivariate Behavioral Research, 16, 171–180. doi:10.1207/s15327906mbr1602_3
-
(1981)
Multivariate Behavioral Research
, vol.16
, pp. 171-180
-
-
Everitt, B.S.1
-
20
-
-
33745601740
-
Local solutions in the estimation of growth mixture models
-
doi:
-
Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36–53. doi:10.1037/1082-989X.11.1.36
-
(2006)
Psychological Methods
, vol.11
, pp. 36-53
-
-
Hipp, J.R.1
Bauer, D.J.2
-
21
-
-
79957803232
-
A longitudinal investigation of motivation and secondary school achievement using growth mixture modeling
-
doi:
-
Hodis, F. A., Meyer, L. H., McClure, J., Weir, K. F., & Walkey, F. H. (2011). A longitudinal investigation of motivation and secondary school achievement using growth mixture modeling. Journal of Educational Psychology, 103, 312–323. doi:10.1037/a0022547
-
(2011)
Journal of Educational Psychology
, vol.103
, pp. 312-323
-
-
Hodis, F.A.1
Meyer, L.H.2
McClure, J.3
Weir, K.F.4
Walkey, F.H.5
-
22
-
-
70349119250
-
Regression and time series model selection in small samples
-
doi:
-
Hurvich, C. M., & Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307. doi:10.1093/biomet/76.2.297
-
(1989)
Biometrika
, vol.76
, pp. 297-307
-
-
Hurvich, C.M.1
Tsai, C.2
-
23
-
-
0038183179
-
Testing the number of components in a normal mixture
-
doi:
-
Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778. doi:10.1093/biomet/88.3.767
-
(2001)
Biometrika
, vol.88
, pp. 767-778
-
-
Lo, Y.1
Mendell, N.2
Rubin, D.3
-
24
-
-
17444413035
-
Investigating population heterogeneity with factor mixture models
-
doi:
-
Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39. doi:10.1037/1082-989X.10.1.21
-
(2005)
Psychological Methods
, vol.10
, pp. 21-39
-
-
Lubke, G.H.1
Muthén, B.2
-
25
-
-
33846951724
-
Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
-
doi:
-
Lubke, G. H., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 26–47. doi:10.1080/10705510709336735
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 26-47
-
-
Lubke, G.H.1
Muthén, B.2
-
26
-
-
33846999872
-
Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
-
doi:
-
Lubke, G., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41, 499–532. doi:10.1207/s15327906mbr4104_4
-
(2006)
Multivariate Behavioral Research
, vol.41
, pp. 499-532
-
-
Lubke, G.1
Neale, M.C.2
-
27
-
-
84879593343
-
Determining the number of components in mixture models for hierarchical data
-
Fink A., (ed), B. Lausen, W. Seidel, & A. Ultsch, Eds., Berlin, Germany: Springer-Verlag
-
Lukociene, O., & Vermunt, J. K. (2010). Determining the number of components in mixture models for hierarchical data. In A. Fink, B. Lausen, W. Seidel, & A. Ultsch (Eds.), Advances in data analysis, data handling, and business intelligence: Studies in classification, data analysis, and knowledge organization (pp. 241–250). Berlin, Germany: Springer-Verlag.
-
(2010)
Advances in data analysis, data handling, and business intelligence: Studies in classification, data analysis, and knowledge organization(pp. 241–250)
-
-
Lukociene, O.1
Vermunt, J.K.2
-
28
-
-
0003224803
-
Structural modeling experiments using multiple growth functions
-
Kanfer R, Ackerman P., Cudeck R., (eds), Eds., Hillsdale, NJ: Erlbaum
-
McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In R Kanfer, P. Ackerman, & R. Cudeck (Eds.), Abilities, motivation, and tethodology: The Minnesota Symposium on learning individual differences (pp. 71–117). Hillsdale, NJ: Erlbaum.
-
(1989)
Abilities, motivation, and tethodology: The Minnesota Symposium on learning individual differences
, pp. 71-117
-
-
McArdle, J.J.1
-
29
-
-
0023570352
-
On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
-
McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36, 318–324.
-
(1987)
Applied Statistics
, vol.36
, pp. 318-324
-
-
McLachlan, G.J.1
-
31
-
-
34249962132
-
Latent curve analysis
-
doi:
-
Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122. doi:10.1007/BF02294746
-
(1990)
Psychometrika
, vol.55
, pp. 107-122
-
-
Meredith, W.1
Tisak, J.2
-
32
-
-
58149368765
-
The unicorn, the normal curve, and other improbable creatures
-
doi:
-
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166. doi:10.1037/0033-2909.105.1.156
-
(1989)
Psychological Bulletin
, vol.105
, pp. 156-166
-
-
Micceri, T.1
-
33
-
-
0142136682
-
Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003)
-
doi:
-
Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8, 369–377. doi:10.1037/1082-989X.8.3.369
-
(2003)
Psychological Methods
, vol.8
, pp. 369-377
-
-
Muthén, B.1
-
34
-
-
8544268508
-
Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
-
Kaplan D., (ed), Ed., Newbury Park, CA: Sage
-
Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345–368). Newbury Park, CA: Sage.
-
(2004)
Handbook of quantitative methodology for the social sciences
, pp. 345-368
-
-
Muthén, B.O.1
-
35
-
-
0034020646
-
The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample
-
Muthén, B. O., & Muthén, L. K. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290–300.
-
(2000)
Journal of Studies on Alcohol
, vol.61
, pp. 290-300
-
-
Muthén, B.O.1
Muthén, L.K.2
-
36
-
-
0032969449
-
Finite mixture modeling with mixture outcomes using the EM algorithm
-
Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.
-
(1999)
Biometrics
, vol.55
, pp. 463-469
-
-
Muthén, B.O.1
Shedden, K.2
-
38
-
-
0033441152
-
Analyzing developmental trajectories: A semi-parametric, group-based approach
-
doi:
-
Nagin, D. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139–157. doi:10.1037/1082-989X.4.2.139
-
(1999)
Psychological Methods
, vol.4
, pp. 139-157
-
-
Nagin, D.1
-
39
-
-
36849091981
-
Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
-
doi:
-
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569. doi:10.1080/10705510701575396
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 535-569
-
-
Nylund, K.L.1
Asparouhov, T.2
Muthén, B.O.3
-
41
-
-
0038525564
-
Monte Carlo experiments: Design and implementation
-
doi:
-
Paxton, P., Curran, P. J., Bollen, K. A., & Kirby, J. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling, 8, 287–312. doi:10.1207/S15328007SEM0802_7
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 287-312
-
-
Paxton, P.1
Curran, P.J.2
Bollen, K.A.3
Kirby, J.4
-
42
-
-
77957244188
-
General growth mixture analysis with antecedents and consequences of change
-
doi:
-
Petras, H., & Masyn, K. (2010). General growth mixture analysis with antecedents and consequences of change. Handbook of Quantitative Criminology, 1, 69–100. doi:10.1007/978-0-387-77650-7_5
-
(2010)
Handbook of Quantitative Criminology
, vol.1
, pp. 69-100
-
-
Petras, H.1
Masyn, K.2
-
44
-
-
84861591786
-
How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM’s performance characteristics
-
Peugh, J. L., & Fan, X. (2012). How well does growth mixture modeling identify heterogeneous growth trajectories? A simulation study examining GMM’s performance characteristics. Structural Equation Modeling, 19, 204–226.
-
(2012)
Structural Equation Modeling
, vol.19
, pp. 204-226
-
-
Peugh, J.L.1
Fan, X.2
-
45
-
-
0142041439
-
Mixture or homogeneous? Comment on Bauer and Curran (2003)
-
doi:
-
Rindskopf, D. (2003). Mixture or homogeneous? Comment on Bauer and Curran (2003). Psychological Methods, 8, 364–368. doi:10.1037/1082-989X.8.3.364
-
(2003)
Psychological Methods
, vol.8
, pp. 364-368
-
-
Rindskopf, D.1
-
46
-
-
0000120766
-
Estimating the dimension of a model
-
Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwartz, G.1
-
47
-
-
0000386489
-
Application of model-selection criteria to some problems in multivariate analysis
-
Sclove, L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
-
(1987)
Psychometrika
, vol.52
, pp. 333-343
-
-
Sclove, L.1
-
48
-
-
41149175664
-
Identifying the correct number of classes in growth mixture models (pp. 317–341)
-
Hancock G. R., Samuelsen K. M., (eds), Eds., Charlotte, NC: Information Age
-
Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models (pp. 317–341). In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Charlotte, NC: Information Age.
-
(2008)
Advances in latent variable mixture models(pp. 317–341)
-
-
Tofighi, D.1
Enders, C.K.2
-
49
-
-
78651288714
-
Addressing the problem of switched class labels in latent variable mixture model simulation studies
-
doi:
-
Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18, 110–131. doi:10.1080/10705511.2011.534695
-
(2011)
Structural Equation Modeling
, vol.18
, pp. 110-131
-
-
Tueller, S.J.1
Drotar, S.2
Lubke, G.H.3
-
50
-
-
34548536809
-
Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data
-
doi:
-
Wang, M., & Bodner, T. E. (2007). Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10, 635–656. doi:10.1177/1094428106289397
-
(2007)
Organizational Research Methods
, vol.10
, pp. 635-656
-
-
Wang, M.1
Bodner, T.E.2
-
51
-
-
26444483914
-
Evaluating latent class analyses in qualitative phenotype identification
-
doi:
-
Yang, C. (2006). Evaluating latent class analyses in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 1090–1104. doi:10.1016/j.csda.2004.11.004
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, pp. 1090-1104
-
-
Yang, C.1
|