메뉴 건너뛰기




Volumn 2, Issue 4, 2007, Pages 345-356

Credit risk analysis using a hybrid data mining model

Author keywords

classifier; machine learning; stacking

Indexed keywords


EID: 84918519338     PISSN: 17408865     EISSN: 17408873     Source Type: Journal    
DOI: 10.1504/IJISTA.2007.014030     Document Type: Article
Times cited : (11)

References (35)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Dordrecht: Kluwer Academic Publishers
    • Aha, D. (1997) Lazy Learning, Dordrecht: Kluwer Academic Publishers.
    • (1997) Lazy Learning
    • Aha, D.1
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998) ‘A tutorial on support vector machines for pattern recognition’, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.1–47.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 1-47
    • Burges, C.1
  • 3
    • 0037401347 scopus 로고    scopus 로고
    • Credit scoring and rejected instances reassigning through evolutionary computation techniques
    • Chen, M.C. and Huang, S.H. (2003) ‘Credit scoring and rejected instances reassigning through evolutionary computation techniques’, Expert Systems with Applications, Vol. 24, pp.433–441.
    • (2003) Expert Systems with Applications , vol.24 , pp. 433-441
    • Chen, M.C.1    Huang, S.H.2
  • 5
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.A. (1936) ‘The use of multiple measurements in taxonomic problems’, Annals of Eugenics, Vol. 7, pp.179–188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 6
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Furnkranz, J. (1999) ‘Separate-and-conquer rule learning’, Artificial Intelligence Review, Vol. 13, pp.3–54.
    • (1999) Artificial Intelligence Review , vol.13 , pp. 3-54
    • Furnkranz, J.1
  • 7
    • 84985847276 scopus 로고
    • Improved linear programming models for discriminant analysis
    • Glover, F. (1990) ‘Improved linear programming models for discriminant analysis’, Decision Science, Vol. 21, pp.771–785.
    • (1990) Decision Science , vol.21 , pp. 771-785
    • Glover, F.1
  • 8
    • 0000832710 scopus 로고
    • Probit and discriminant functions for classifying credit applicants: a comparison
    • Grablowsky, B.J. and Talley, W.K. (1981) ‘Probit and discriminant functions for classifying credit applicants: a comparison’, Journal of Economic Business, Vol. 33, pp.254–261.
    • (1981) Journal of Economic Business , vol.33 , pp. 254-261
    • Grablowsky, B.J.1    Talley, W.K.2
  • 9
    • 1542603058 scopus 로고    scopus 로고
    • A k-NN classifier for assessing consumer credit risk
    • Henley, W.E. and Hand, D.J. (1996) ‘A k-NN classifier for assessing consumer credit risk’, Statistician, Vol. 45, pp.77–95.
    • (1996) Statistician , vol.45 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 10
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: a market comparative study
    • Huang, Z., Chen, H.C., Hsu, C.J., Chen, W.H. and Wu, S.S. (2004) ‘Credit rating analysis with support vector machines and neural networks: a market comparative study’, Decision Support Systems, Vol. 37, pp.543–558.
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.C.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.S.5
  • 12
    • 0030736561 scopus 로고    scopus 로고
    • Combinations of weak classifiers
    • Ji, C. and Ma, S. (1997) ‘Combinations of weak classifiers’, IEEE Transaction on Neural Networks, Vol. 8, No. 1, pp.32–42.
    • (1997) IEEE Transaction on Neural Networks , vol.8 , Issue.1 , pp. 32-42
    • Ji, C.1    Ma, S.2
  • 13
    • 0041055721 scopus 로고
    • Credit scoring branches out
    • Makowski, P. (1985) ‘Credit scoring branches out’, Credit World, Vol. 75, pp.30–37.
    • (1985) Credit World , vol.75 , pp. 30-37
    • Makowski, P.1
  • 14
    • 0036027367 scopus 로고    scopus 로고
    • Differentiating between good credits and bad credits using neuro-fuzzy systems
    • Malhotra, R. and Malhotra, D.K. (2002) ‘Differentiating between good credits and bad credits using neuro-fuzzy systems’, European Journal of Operational Research, Vol. 136, pp.190–211.
    • (2002) European Journal of Operational Research , vol.136 , pp. 190-211
    • Malhotra, R.1    Malhotra, D.K.2
  • 15
    • 0037397886 scopus 로고    scopus 로고
    • Evaluating consumer loans using neural networks
    • Malhotra, R. and Malhotra, D.K. (2003) ‘Evaluating consumer loans using neural networks’, Omega, Vol. 31, pp.83–96.
    • (2003) Omega , vol.31 , pp. 83-96
    • Malhotra, R.1    Malhotra, D.K.2
  • 16
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • Mangasarian, O.L. (1965) ‘Linear and nonlinear separation of patterns by linear programming’, Operations Research, Vol. 13, pp.444–452.
    • (1965) Operations Research , vol.13 , pp. 444-452
    • Mangasarian, O.L.1
  • 18
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: a multi-disciplinary survey
    • Murthy, S. (1998) ‘Automatic construction of decision trees from data: a multi-disciplinary survey’, Data Mining and Knowledge Discovery, Vol. 2, pp.345–389.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy, S.1
  • 19
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • Piramuthu, S. (1999) ‘Financial credit-risk evaluation with neural and neurofuzzy systems’, European Journal of Operational Research, Vol. 112, pp.310–321.
    • (1999) European Journal of Operational Research , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 20
    • 0001171722 scopus 로고    scopus 로고
    • Using sparseness and analytic QP to speed training of support vector machines
    • M.S. Kearns, S.A. Solla and D.A. Cohn (Eds.) Massachusetts: MIT Press
    • Platt, J. (1999) ‘Using sparseness and analytic QP to speed training of support vector machines’, in M.S. Kearns, S.A. Solla and D.A. Cohn (Eds.) Advances in Neural Information Processing Systems, Massachusetts: MIT Press, Vol. 11.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.1
  • 22
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer, C. (1993) ‘Selecting a classification method by cross-validation’, Machine Learning, Vol. 13, pp.135–143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 24
    • 0028199284 scopus 로고
    • Combining evolution with credit apportionment: a new learning algorithm for neural nets
    • Smalz, R. and Conrad, M. (1994) ‘Combining evolution with credit apportionment: a new learning algorithm for neural nets’, Neural Networks, Vol. 7, pp.341–351.
    • (1994) Neural Networks , vol.7 , pp. 341-351
    • Smalz, R.1    Conrad, M.2
  • 25
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers
    • Thomas, L.C. (2002) ‘A survey of credit and behavioral scoring: forecasting financial risk of lending to consumers’, International Journal of Forecasting, Vol. 16, pp.149–172.
    • (2002) International Journal of Forecasting , vol.16 , pp. 149-172
    • Thomas, L.C.1
  • 27
    • 0033343146 scopus 로고    scopus 로고
    • Issues in stacked generalization
    • Morgan Kaufmann
    • Ting, K. and Witten, I. (1999) ‘Issues in stacked generalization’, Artificial Intelligence Research, Morgan Kaufmann, Vol. 10, pp.271–289.
    • (1999) Artificial Intelligence Research , vol.10 , pp. 271-289
    • Ting, K.1    Witten, I.2
  • 29
    • 0007687443 scopus 로고    scopus 로고
    • Genetic algorithms applications in the analysis of insolvency risk
    • Varetto, F. (1998) ‘Genetic algorithms applications in the analysis of insolvency risk’, Journal of Banking and Finance, Vol. 22, pp.1421–1439.
    • (1998) Journal of Banking and Finance , vol.22 , pp. 1421-1439
    • Varetto, F.1
  • 30
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Wang, Y.Q., Wang, S.Y. and Lai, K.K. (2005) ‘A new fuzzy support vector machine to evaluate credit risk’, IEEE Transactions on Fuzzy Systems, Vol. 13, pp.820–831.
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , pp. 820-831
    • Wang, Y.Q.1    Wang, S.Y.2    Lai, K.K.3
  • 31
    • 84974012809 scopus 로고
    • A note on the comparison of logit and discriminant models of consumer credit behaviour
    • Wiginton, J.C. (1980) ‘A note on the comparison of logit and discriminant models of consumer credit behaviour’, Journal of Financial Quantitative Analysis, Vol. 15, pp.757–770.
    • (1980) Journal of Financial Quantitative Analysis , vol.15 , pp. 757-770
    • Wiginton, J.C.1
  • 33
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. (1992) ‘Stacked generalization’, Neural Networks, Vol. 5, No. 2, pp.241–260.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.1
  • 34
    • 84951718909 scopus 로고    scopus 로고
    • http://www.rulequest.com/see5examples.html
  • 35
    • 84951718910 scopus 로고    scopus 로고
    • ftp.ics.uci.edu/pub/machine-learning-databases/statlog/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.