-
1
-
-
3042691747
-
The quinoprotein dehydrogenases for methanol and glucose
-
Anthony C. 2004. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 428: 2-9.
-
(2004)
Arch. Biochem. Biophys
, vol.428
, pp. 2-9
-
-
Anthony, C.1
-
2
-
-
79961024702
-
Direct methane conversion routes to chemicals and fuels
-
Alvarez-Galvan MC, Mota N, Ojeda M, Rojas S, Navarro RM, Fierro JLG. 2011. Direct methane conversion routes to chemicals and fuels. Catal. Today 171: 15-23.
-
(2011)
Catal. Today
, vol.171
, pp. 15-23
-
-
Alvarez-Galvan, M.C.1
Mota, N.2
Ojeda, M.3
Rojas, S.4
Navarro, R.M.5
Fierro, J.6
-
3
-
-
0036038187
-
Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea
-
Arp DJ, Sayavedra-Soto LA, Hommes NG. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 178: 250-255.
-
(2002)
Arch. Microbiol
, vol.178
, pp. 250-255
-
-
Arp, D.J.1
Sayavedra-Soto, L.A.2
Hommes, N.G.3
-
4
-
-
34547752024
-
Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase
-
Balasubramanian R, Rosenzweig AC. 2007. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc. Chem. Res. 40: 573-580.
-
(2007)
Acc. Chem. Res
, vol.40
, pp. 573-580
-
-
Balasubramanian, R.1
Rosenzweig, A.C.2
-
5
-
-
53349117645
-
Direct oxidation of methane to oxygenates over heteropolyanions
-
Benlounes O, Mansouri S, Rabia C, Hocine S. 2008. Direct oxidation of methane to oxygenates over heteropolyanions. J. Nat. Gas Chem. 17: 309-312.
-
(2008)
J. Nat. Gas Chem
, vol.17
, pp. 309-312
-
-
Benlounes, O.1
Mansouri, S.2
Rabia, C.3
Hocine, S.4
-
6
-
-
77952061155
-
Getting the metal right
-
Bollinger Jr JM. 2010. Getting the metal right. Nature 465: 40-41.
-
(2010)
Nature
, vol.465
, pp. 40-41
-
-
Bollinger, J.M.1
-
7
-
-
84925520175
-
Aerobic methylotrophic prokaryotes
-
In DeLong EF, Lory S, Stackebrandt E, Thompson F, Rosenberg E (eds.), Springer, Berlin-Heidelberg
-
Chistoserdova L, Lidstrom ME. 2013. Aerobic methylotrophic prokaryotes, pp. 267-285. In DeLong EF, Lory S, Stackebrandt E, Thompson F, Rosenberg E (eds.). The Prokaryotes. Springer, Berlin-Heidelberg.
-
(2013)
The Prokaryotes
, pp. 267-285
-
-
Chistoserdova, L.1
Lidstrom, M.E.2
-
8
-
-
84893646822
-
Envisioning the bioconversion of methane to liquid fuels
-
Conrado RJ, Gonzalez R. 2014. Envisioning the bioconversion of methane to liquid fuels. Science 343: 621-623.
-
(2014)
Science
, vol.343
, pp. 621-623
-
-
Conrado, R.J.1
Gonzalez, R.2
-
9
-
-
84867521183
-
Architecture and active site of particulate methane monooxygenase
-
Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 47: 483-492.
-
(2012)
Crit. Rev. Biochem. Mol. Biol
, vol.47
, pp. 483-492
-
-
Culpepper, M.A.1
Rosenzweig, A.C.2
-
10
-
-
77953215421
-
Respiration in methanotrophs
-
In Zannoni D (eds.), Springer, Netherlands, Dordrecht
-
DiSpirito AA, Kunz RC, Choi DW, Zahn JA. 2004. Respiration in methanotrophs, pp. 149-168. In Zannoni D (eds.). Respiration in Archaea and Bacteria: Diversity of Procaryotic Respiratory Systems. Springer, Netherlands, Dordrecht.
-
(2004)
Respiration in Archaea and Bacteria: Diversity of Procaryotic Respiratory Systems
, pp. 149-168
-
-
Dispirito, A.A.1
Kunz, R.C.2
Choi, D.W.3
Zahn, J.A.4
-
11
-
-
79958269960
-
High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
-
Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.
-
(2011)
Bioresour. Technol
, vol.102
, pp. 7349-7353
-
-
Duan, C.1
Luo, M.2
Xing, X.3
-
12
-
-
36849030274
-
Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia
-
Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-882.
-
(2007)
Nature
, vol.450
, pp. 879-882
-
-
Dunfield, P.F.1
Yuryev, A.2
Senin, P.3
Smirnova, A.V.4
Stott, M.B.5
Hou, S.6
-
13
-
-
77954913417
-
Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes
-
Friedle S, Reisner E, Lippard SJ. 2010. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39: 2768-2779.
-
(2010)
Chem. Soc. Rev
, vol.39
, pp. 2768-2779
-
-
Friedle, S.1
Reisner, E.2
Lippard, S.J.3
-
14
-
-
0344223436
-
Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b
-
Furuto T, Takeguchi M, Okura I. 1999. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A Chem. 144: 257-261.
-
(1999)
J. Mol. Catal. A Chem
, vol.144
, pp. 257-261
-
-
Furuto, T.1
Takeguchi, M.2
Okura, I.3
-
15
-
-
33845377555
-
The direct conversion of methane to methanol by controlled oxidation
-
Gesser HD, Hunter NR, Prakash CB. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85: 235-244.
-
(1985)
Chem. Rev
, vol.85
, pp. 235-244
-
-
Gesser, H.D.1
Hunter, N.R.2
Prakash, C.B.3
-
16
-
-
0031432811
-
Anaerobic digestion of biomass for methane production: A review
-
Gunaseelan VN. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg. 13: 83-114.
-
(1997)
Biomass Bioenerg
, vol.13
, pp. 83-114
-
-
Gunaseelan, V.N.1
-
18
-
-
84862077680
-
Jenkins RL, et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5. Angew
-
Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Jenkins RL, et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51: 5129-5133.
-
Chem. Int. Ed
, vol.51
, pp. 5129-5133
-
-
Hammond, C.1
Forde, M.M.2
Rahim, M.3
Thetford, A.4
He, Q.5
-
19
-
-
0028791540
-
Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related
-
Holmes AJ, Costello A, Lidstrom ME, Murrell JC. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.
-
(1995)
FEMS Microbiol. Lett
, vol.132
, pp. 203-208
-
-
Holmes, A.J.1
Costello, A.2
Lidstrom, M.E.3
Murrell, J.C.4
-
20
-
-
33845893336
-
Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b
-
Hwang JW, Choi YB, Park S, Choi CY, Lee EY. 2007. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation 18: 91-101.
-
(2007)
Biodegradation
, vol.18
, pp. 91-101
-
-
Hwang, J.W.1
Choi, Y.B.2
Park, S.3
Choi, C.Y.4
Lee, E.Y.5
-
21
-
-
0001283322
-
Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes
-
Hyman MR, Murton IB, Arp DJ. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54: 3187-3190.
-
(1988)
Appl. Environ. Microbiol
, vol.54
, pp. 3187-3190
-
-
Hyman, M.R.1
Murton, I.B.2
Arp, D.J.3
-
22
-
-
0035184113
-
Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol
-
Kang J, Lee EY, Park S. 2001. Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol. Biotechnol. Lett. 23: 1877-1882.
-
(2001)
Biotechnol. Lett
, vol.23
, pp. 1877-1882
-
-
Kang, J.1
Lee, E.Y.2
Park, S.3
-
23
-
-
80052338122
-
Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin–Benson–Bassham cycle for carbon dioxide fixation
-
Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. 2011. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin–Benson–Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193: 4438-4446.
-
(2011)
J. Bacteriol
, vol.193
, pp. 4438-4446
-
-
Khadem, A.F.1
Pol, A.2
Wieczorek, A.3
Mohammadi, S.S.4
Francoijs, K.J.5
Stunnenberg, H.G.6
-
24
-
-
77956224853
-
Optimization of lab scale methanol production by Methylosinus trichosporium OB3b
-
Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15: 476-480.
-
(2010)
Biotechnol. Bioprocess Eng
, vol.15
, pp. 476-480
-
-
Kim, H.G.1
Han, G.H.2
Kim, S.W.3
-
25
-
-
33646409279
-
Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system
-
Kim HG, Kim SW. 2006. Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system. Biotechnol. Bioprocess Eng. 11: 134-139.
-
(2006)
Biotechnol. Bioprocess Eng
, vol.11
, pp. 134-139
-
-
Kim, H.G.1
Kim, S.W.2
-
26
-
-
84879358766
-
-
US Department of Energy, Washington, DC
-
Kuuskraa VA, Stevens SH, Moodhe KD. 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, pp. 1-730. US Department of Energy, Washington, DC.
-
(2013)
Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States
, pp. 1-730
-
-
Kuuskraa, V.A.1
Stevens, S.H.2
Moodhe, K.D.3
-
27
-
-
0142152589
-
Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene
-
Lee EY, Ye BD, Park SH. 2003. Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene. Biotechnol. Lett. 25: 1757-1761.
-
(2003)
Biotechnol. Lett
, vol.25
, pp. 1757-1761
-
-
Lee, E.Y.1
Ye, B.D.2
Park, S.H.3
-
28
-
-
3342947835
-
Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b
-
Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.
-
(2004)
Biotechnol. Lett
, vol.26
, pp. 947-950
-
-
Lee, S.G.1
Goo, J.H.2
Kim, H.G.3
Oh, J.I.4
Kim, Y.M.5
Kim, S.W.6
-
29
-
-
84874191086
-
Control of substrate access to the active site in methane monooxygenase
-
Lee SJ, McCormick MS, Lippard SJ, Cho US. 2013. Control of substrate access to the active site in methane monooxygenase. Nature 494: 380-384.
-
(2013)
Nature
, vol.494
, pp. 380-384
-
-
Lee, S.J.1
McCormick, M.S.2
Lippard, S.J.3
Cho, U.S.4
-
30
-
-
4444257275
-
Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase
-
Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147-164.
-
(2004)
Crit. Rev. Biochem. Mol. Biol
, vol.39
, pp. 147-164
-
-
Lieberman, R.L.1
Rosenzweig, A.C.2
-
31
-
-
0028090067
-
Biochemistry of the soluble methane monooxygenase
-
Lipscomb JD. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48: 371-399.
-
(1994)
Annu. Rev. Microbiol
, vol.48
, pp. 371-399
-
-
Lipscomb, J.D.1
-
32
-
-
79955478327
-
Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid
-
Li T, Wang SJ, Yu CS, Ma YC, Li KL, Lin LW. 2011. Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid. Appl. Catal. A Gen. 398: 150-154.
-
(2011)
Appl. Catal. A Gen
, vol.398
, pp. 150-154
-
-
Li, T.1
Wang, S.J.2
Yu, C.S.3
Ma, Y.C.4
Li, K.L.5
Lin, L.W.6
-
33
-
-
84917739283
-
Worldwide look at reserves and production
-
Marilyn R. 2011. Worldwide look at reserves and production. Oil Gas J. 109: 26-29.
-
(2011)
Oil Gas J
, vol.109
, pp. 26-29
-
-
Marilyn, R.1
-
34
-
-
84884263177
-
Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study
-
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. 2013. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front. Microbiol. 4: 1-16.
-
(2013)
Front. Microbiol
, vol.4
, pp. 1-16
-
-
Matsen, J.B.1
Yang, S.2
Stein, L.Y.3
Beck, D.4
Kalyuzhnaya, M.G.5
-
35
-
-
0036260181
-
New catalyst systems for the catalytic conversion of methane into methanol
-
Muehlhofer M, Strassner T, Herrmann WA. 2002. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. 41: 1745-1747.
-
(2002)
Angew. Chem. Int. Ed
, vol.41
, pp. 1745-1747
-
-
Muehlhofer, M.1
Strassner, T.2
Herrmann, W.A.3
-
36
-
-
0034192166
-
Regulation of expression of methane monooxygenases by copper ions
-
Murrell JC, McDonald IR, Gilbert B. 2000. Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol. 8: 221-225.
-
(2000)
Trends Microbiol
, vol.8
, pp. 221-225
-
-
Murrell, J.C.1
McDonald, I.R.2
Gilbert, B.3
-
37
-
-
84862567277
-
Biochemistry and molecular biology of methane monooxygenase
-
Timmis KN, Springer-Verlag
-
Murrell JC, Smith TJ. 2010. Biochemistry and molecular biology of methane monooxygenase, pp. 1046-1055. In Timmis KN (ed.). Handbook of Hydrocarbon and Lipid Microbiology (eds.). Springer-Verlag.
-
(2010)
Handbook of Hydrocarbon and Lipid Microbiology
, pp. 1046-1055
-
-
Murrell, J.C.1
Smith, T.J.2
-
38
-
-
0029884241
-
Regulation of bacterial methane oxidation: Transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions
-
Nielsen AK, Gerdes K, Degn H, Murrel JC. 1996. Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Soc. Gen. Microbiol. 142: 1289-1296.
-
(1996)
Soc. Gen. Microbiol
, vol.142
, pp. 1289-1296
-
-
Nielsen, A.K.1
Gerdes, K.2
Degn, H.3
Murrel, J.C.4
-
39
-
-
18844417483
-
Beyond oil and gas: The methanol economy
-
Olah GA. 2005. Beyond oil and gas: the methanol economy. Angew. Chem. 44: 2636-2639.
-
(2005)
Angew. Chem
, vol.44
, pp. 2636-2639
-
-
Olah, G.A.1
-
40
-
-
84876896467
-
Biological conversion of methane to methanol
-
Park D, Lee J. 2013. Biological conversion of methane to methanol. Kor. J. Chem. Eng. 30: 977-987.
-
(2013)
Kor. J. Chem. Eng
, vol.30
, pp. 977-987
-
-
Park, D.1
Lee, J.2
-
41
-
-
80052269504
-
Economic analysis of a combined energy–methanol production plant
-
Pellegrini LA, Soave G, Gamba S, Langè S. 2011. Economic analysis of a combined energy–methanol production plant. Appl. Energ. 88: 4891-4897.
-
(2011)
Appl. Energ
, vol.88
, pp. 4891-4897
-
-
Pellegrini, L.A.1
Soave, G.2
Gamba, S.3
Langè, S.4
-
42
-
-
0027342081
-
A mercury-catalyzed, high-yield system for the oxidation of methane to methanol
-
Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T. 1993. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259: 340-343.
-
(1993)
Science
, vol.259
, pp. 340-343
-
-
Periana, R.A.1
Taube, D.J.2
Evitt, E.R.3
Loffler, D.G.4
Wentrcek, P.R.5
Voss, G.6
Masuda, T.7
-
43
-
-
36949016622
-
Methanotrophy below pH 1 by a new Verrucomicrobia species
-
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Camp HJMOD. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874-878.
-
(2007)
Nature
, vol.450
, pp. 874-878
-
-
Pol, A.1
Heijmans, K.2
Harhangi, H.R.3
Tedesco, D.4
Jetten, M.5
Camp, H.6
-
44
-
-
0021911405
-
The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath)
-
Prior SD, Dalton H. 1985. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155-163.
-
(1985)
J. Gen. Microbiol
, vol.131
, pp. 155-163
-
-
Prior, S.D.1
Dalton, H.2
-
45
-
-
0027849663
-
Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: Comparison to deoxy and deoxy-azide hemerythrin
-
Pulver S, Froland WA, Fox BG, Lipscomb JD, Solomon EI. 1993. Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J. Am. Chem. Soc. 115: 12409-12422.
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 12409-12422
-
-
Pulver, S.1
Froland, W.A.2
Fox, B.G.3
Lipscomb, J.D.4
Solomon, E.I.5
-
46
-
-
0003951980
-
Methane conversion by oxidative processes
-
In Wolf EE (ed.), Van Nostrand Reinhold, New York
-
Reinhold VN. 1992. Methane conversion by oxidative processes. In Wolf EE (ed.). Fundamental and Engineering Aspects. Van Nostrand Reinhold, New York.
-
(1992)
Fundamental and Engineering Aspects
-
-
Reinhold, V.N.1
-
47
-
-
0030885887
-
Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): Implications for substrate gating and component interactions
-
Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA. 1997. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Protein Struct. Funct. Genet. 29: 141-152.
-
(1997)
Protein Struct. Funct. Genet
, vol.29
, pp. 141-152
-
-
Rosenzweig, A.C.1
Brandstetter, H.2
Whittington, D.A.3
Nordlund, P.4
Lippard, S.J.5
Frederick, C.A.6
-
48
-
-
58849109320
-
Methanol-based industrial biotechnology: Current status and future perspectives of methylotrophic bacteria
-
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA. 2008. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 27: 107-115.
-
(2008)
Trends Biotechnol
, vol.27
, pp. 107-115
-
-
Schrader, J.1
Schilling, M.2
Holtmann, D.3
Sell, D.4
Filho, M.V.5
Marx, A.6
Vorholt, J.A.7
-
50
-
-
0012233552
-
Activation of CH bonds by metal complexes
-
Shilov AE, Shul’pin GB. 1997. Activation of CH bonds by metal complexes. Chem. Rev. 97: 2879-2932.
-
(1997)
Chem. Rev
, vol.97
, pp. 2879-2932
-
-
Shilov, A.E.1
Shul’Pin, G.B.2
-
51
-
-
84863393532
-
Simultaneously mitigating near-term climate change and improving human health and food security
-
Shindell D, Kuylenstierna JCI, Vignati E, Dingenen RV, Amann M, Klimont Z, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335: 183-189.
-
(2012)
Science
, vol.335
, pp. 183-189
-
-
Shindell, D.1
Kuylenstierna, J.2
Vignati, E.3
Dingenen, R.V.4
Amann, M.5
Klimont, Z.6
-
52
-
-
0017899010
-
Purification and properties of an NAD (P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath)
-
Stirling DI, Dalton H. 1978. Purification and properties of an NAD (P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J. Gen. Appl. Microbiol. 107: 19-29.
-
(1978)
J. Gen. Appl. Microbiol
, vol.107
, pp. 19-29
-
-
Stirling, D.I.1
Dalton, H.2
-
53
-
-
84875774267
-
High-rate, high-yield production of methanol by ammonia-oxidizing bacteria
-
Taher E, Chandran K. 2013. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ. Sci. Technol. 47: 3167-3173.
-
(2013)
Environ. Sci. Technol
, vol.47
, pp. 3167-3173
-
-
Taher, E.1
Chandran, K.2
-
54
-
-
0344925411
-
Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation
-
Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.
-
(1997)
Appl. Biochem. Biotechnol
, vol.68
, pp. 143-152
-
-
Takeguchi, M.1
Furuto, T.2
Sugimori, D.3
Okura, I.4
-
55
-
-
0034311053
-
Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b
-
Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jap. 4: 51-63.
-
(2000)
Catal. Surv. Jap
, vol.4
, pp. 51-63
-
-
Takeguchi, M.1
Okura, I.2
-
56
-
-
41349106563
-
Metabolic aspects of aerobic obligate methanotrophy
-
Trotsenko YA, Murrell JC. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183-229.
-
(2008)
Adv. Appl. Microbiol
, vol.63
, pp. 183-229
-
-
Trotsenko, Y.A.1
Murrell, J.C.2
-
57
-
-
8844264574
-
Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath)
-
Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. 2004. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). Plos Biol. 2: 1616-1628.
-
(2004)
Plos Biol
, vol.2
, pp. 1616-1628
-
-
Ward, N.1
Larsen, O.2
Sakwa, J.3
Bruseth, L.4
Khouri, H.5
Durkin, A.S.6
-
58
-
-
84864823033
-
Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas
-
Wood DA, Nwaoha C, Towler BF. 2012. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 9: 196-208.
-
(2012)
J. Nat. Gas Sci. Eng
, vol.9
, pp. 196-208
-
-
Wood, D.A.1
Nwaoha, C.2
Towler, B.F.3
-
59
-
-
4844229904
-
Production of methanol from methane by methanotrophic bacteria
-
Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM. 2004. Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransform. 22: 225-229.
-
(2004)
Biocatal. Biotransform
, vol.22
, pp. 225-229
-
-
Xin, J.Y.1
Cui, J.R.2
Niu, J.Z.3
Hua, S.F.4
Xia, C.G.5
Li, S.B.6
Zhu, L.M.7
-
60
-
-
0036306867
-
Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme
-
Xin JY, Cui JR, Hu XX, Li SB, Xia CG, Zhu LM, Wang YQ. 2002. Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme. Biochem. Biophys. Res. Commun. 295: 182-186.
-
(2002)
Biochem. Biophys. Res. Commun
, vol.295
, pp. 182-186
-
-
Xin, J.Y.1
Cui, J.R.2
Hu, X.X.3
Li, S.B.4
Xia, C.G.5
Zhu, L.M.6
Wang, Y.Q.7
-
61
-
-
33746626867
-
Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): A DFT and QM/MM study
-
Yoshizawa K, Shiota Y. 2006. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128: 9873-9881.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 9873-9881
-
-
Yoshizawa, K.1
Shiota, Y.2
-
62
-
-
0035161053
-
Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath
-
Zahn JA, B ergmann DJ, Boyd J M, K unz RC, D iSpirito AA. 2001. Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J. Bacteriol. 183: 6832-6840.
-
(2001)
J. Bacteriol
, vol.183
, pp. 6832-6840
-
-
Zahn, J.A.1
B Ergmann, D.J.2
Boyd, J.M.3
K Unz, R.C.4
D Ispirito, A.A.5
|