메뉴 건너뛰기




Volumn 24, Issue 12, 2014, Pages 1597-1605

Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries

Author keywords

Methane; Methane monooxygenase; Methanol; Methanotrophs; Natural gas; Shale gas

Indexed keywords

METHANE; METHANE MONOOXYGENASE; METHANOL; METHANOL DEHYDROGENASE; RECOMBINANT ENZYME; BIOFUEL; OXYGENASE;

EID: 84917696490     PISSN: 10177825     EISSN: 17388872     Source Type: Journal    
DOI: 10.4014/jmb.1407.07070     Document Type: Article
Times cited : (75)

References (62)
  • 1
    • 3042691747 scopus 로고    scopus 로고
    • The quinoprotein dehydrogenases for methanol and glucose
    • Anthony C. 2004. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 428: 2-9.
    • (2004) Arch. Biochem. Biophys , vol.428 , pp. 2-9
    • Anthony, C.1
  • 3
    • 0036038187 scopus 로고    scopus 로고
    • Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea
    • Arp DJ, Sayavedra-Soto LA, Hommes NG. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 178: 250-255.
    • (2002) Arch. Microbiol , vol.178 , pp. 250-255
    • Arp, D.J.1    Sayavedra-Soto, L.A.2    Hommes, N.G.3
  • 4
    • 34547752024 scopus 로고    scopus 로고
    • Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase
    • Balasubramanian R, Rosenzweig AC. 2007. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc. Chem. Res. 40: 573-580.
    • (2007) Acc. Chem. Res , vol.40 , pp. 573-580
    • Balasubramanian, R.1    Rosenzweig, A.C.2
  • 5
    • 53349117645 scopus 로고    scopus 로고
    • Direct oxidation of methane to oxygenates over heteropolyanions
    • Benlounes O, Mansouri S, Rabia C, Hocine S. 2008. Direct oxidation of methane to oxygenates over heteropolyanions. J. Nat. Gas Chem. 17: 309-312.
    • (2008) J. Nat. Gas Chem , vol.17 , pp. 309-312
    • Benlounes, O.1    Mansouri, S.2    Rabia, C.3    Hocine, S.4
  • 6
    • 77952061155 scopus 로고    scopus 로고
    • Getting the metal right
    • Bollinger Jr JM. 2010. Getting the metal right. Nature 465: 40-41.
    • (2010) Nature , vol.465 , pp. 40-41
    • Bollinger, J.M.1
  • 7
    • 84925520175 scopus 로고    scopus 로고
    • Aerobic methylotrophic prokaryotes
    • In DeLong EF, Lory S, Stackebrandt E, Thompson F, Rosenberg E (eds.), Springer, Berlin-Heidelberg
    • Chistoserdova L, Lidstrom ME. 2013. Aerobic methylotrophic prokaryotes, pp. 267-285. In DeLong EF, Lory S, Stackebrandt E, Thompson F, Rosenberg E (eds.). The Prokaryotes. Springer, Berlin-Heidelberg.
    • (2013) The Prokaryotes , pp. 267-285
    • Chistoserdova, L.1    Lidstrom, M.E.2
  • 8
    • 84893646822 scopus 로고    scopus 로고
    • Envisioning the bioconversion of methane to liquid fuels
    • Conrado RJ, Gonzalez R. 2014. Envisioning the bioconversion of methane to liquid fuels. Science 343: 621-623.
    • (2014) Science , vol.343 , pp. 621-623
    • Conrado, R.J.1    Gonzalez, R.2
  • 9
    • 84867521183 scopus 로고    scopus 로고
    • Architecture and active site of particulate methane monooxygenase
    • Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 47: 483-492.
    • (2012) Crit. Rev. Biochem. Mol. Biol , vol.47 , pp. 483-492
    • Culpepper, M.A.1    Rosenzweig, A.C.2
  • 11
    • 79958269960 scopus 로고    scopus 로고
    • High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
    • Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.
    • (2011) Bioresour. Technol , vol.102 , pp. 7349-7353
    • Duan, C.1    Luo, M.2    Xing, X.3
  • 12
    • 36849030274 scopus 로고    scopus 로고
    • Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia
    • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-882.
    • (2007) Nature , vol.450 , pp. 879-882
    • Dunfield, P.F.1    Yuryev, A.2    Senin, P.3    Smirnova, A.V.4    Stott, M.B.5    Hou, S.6
  • 13
    • 77954913417 scopus 로고    scopus 로고
    • Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes
    • Friedle S, Reisner E, Lippard SJ. 2010. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39: 2768-2779.
    • (2010) Chem. Soc. Rev , vol.39 , pp. 2768-2779
    • Friedle, S.1    Reisner, E.2    Lippard, S.J.3
  • 14
    • 0344223436 scopus 로고    scopus 로고
    • Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b
    • Furuto T, Takeguchi M, Okura I. 1999. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A Chem. 144: 257-261.
    • (1999) J. Mol. Catal. A Chem , vol.144 , pp. 257-261
    • Furuto, T.1    Takeguchi, M.2    Okura, I.3
  • 15
    • 33845377555 scopus 로고
    • The direct conversion of methane to methanol by controlled oxidation
    • Gesser HD, Hunter NR, Prakash CB. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85: 235-244.
    • (1985) Chem. Rev , vol.85 , pp. 235-244
    • Gesser, H.D.1    Hunter, N.R.2    Prakash, C.B.3
  • 16
    • 0031432811 scopus 로고    scopus 로고
    • Anaerobic digestion of biomass for methane production: A review
    • Gunaseelan VN. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg. 13: 83-114.
    • (1997) Biomass Bioenerg , vol.13 , pp. 83-114
    • Gunaseelan, V.N.1
  • 17
  • 18
    • 84862077680 scopus 로고    scopus 로고
    • Jenkins RL, et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5. Angew
    • Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Jenkins RL, et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51: 5129-5133.
    • Chem. Int. Ed , vol.51 , pp. 5129-5133
    • Hammond, C.1    Forde, M.M.2    Rahim, M.3    Thetford, A.4    He, Q.5
  • 19
    • 0028791540 scopus 로고
    • Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related
    • Holmes AJ, Costello A, Lidstrom ME, Murrell JC. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.
    • (1995) FEMS Microbiol. Lett , vol.132 , pp. 203-208
    • Holmes, A.J.1    Costello, A.2    Lidstrom, M.E.3    Murrell, J.C.4
  • 20
    • 33845893336 scopus 로고    scopus 로고
    • Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b
    • Hwang JW, Choi YB, Park S, Choi CY, Lee EY. 2007. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation 18: 91-101.
    • (2007) Biodegradation , vol.18 , pp. 91-101
    • Hwang, J.W.1    Choi, Y.B.2    Park, S.3    Choi, C.Y.4    Lee, E.Y.5
  • 21
    • 0001283322 scopus 로고
    • Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes
    • Hyman MR, Murton IB, Arp DJ. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54: 3187-3190.
    • (1988) Appl. Environ. Microbiol , vol.54 , pp. 3187-3190
    • Hyman, M.R.1    Murton, I.B.2    Arp, D.J.3
  • 22
    • 0035184113 scopus 로고    scopus 로고
    • Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol
    • Kang J, Lee EY, Park S. 2001. Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol. Biotechnol. Lett. 23: 1877-1882.
    • (2001) Biotechnol. Lett , vol.23 , pp. 1877-1882
    • Kang, J.1    Lee, E.Y.2    Park, S.3
  • 23
    • 80052338122 scopus 로고    scopus 로고
    • Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin–Benson–Bassham cycle for carbon dioxide fixation
    • Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. 2011. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin–Benson–Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193: 4438-4446.
    • (2011) J. Bacteriol , vol.193 , pp. 4438-4446
    • Khadem, A.F.1    Pol, A.2    Wieczorek, A.3    Mohammadi, S.S.4    Francoijs, K.J.5    Stunnenberg, H.G.6
  • 24
    • 77956224853 scopus 로고    scopus 로고
    • Optimization of lab scale methanol production by Methylosinus trichosporium OB3b
    • Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15: 476-480.
    • (2010) Biotechnol. Bioprocess Eng , vol.15 , pp. 476-480
    • Kim, H.G.1    Han, G.H.2    Kim, S.W.3
  • 25
    • 33646409279 scopus 로고    scopus 로고
    • Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system
    • Kim HG, Kim SW. 2006. Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system. Biotechnol. Bioprocess Eng. 11: 134-139.
    • (2006) Biotechnol. Bioprocess Eng , vol.11 , pp. 134-139
    • Kim, H.G.1    Kim, S.W.2
  • 27
    • 0142152589 scopus 로고    scopus 로고
    • Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene
    • Lee EY, Ye BD, Park SH. 2003. Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene. Biotechnol. Lett. 25: 1757-1761.
    • (2003) Biotechnol. Lett , vol.25 , pp. 1757-1761
    • Lee, E.Y.1    Ye, B.D.2    Park, S.H.3
  • 28
    • 3342947835 scopus 로고    scopus 로고
    • Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b
    • Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.
    • (2004) Biotechnol. Lett , vol.26 , pp. 947-950
    • Lee, S.G.1    Goo, J.H.2    Kim, H.G.3    Oh, J.I.4    Kim, Y.M.5    Kim, S.W.6
  • 29
    • 84874191086 scopus 로고    scopus 로고
    • Control of substrate access to the active site in methane monooxygenase
    • Lee SJ, McCormick MS, Lippard SJ, Cho US. 2013. Control of substrate access to the active site in methane monooxygenase. Nature 494: 380-384.
    • (2013) Nature , vol.494 , pp. 380-384
    • Lee, S.J.1    McCormick, M.S.2    Lippard, S.J.3    Cho, U.S.4
  • 30
    • 4444257275 scopus 로고    scopus 로고
    • Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase
    • Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147-164.
    • (2004) Crit. Rev. Biochem. Mol. Biol , vol.39 , pp. 147-164
    • Lieberman, R.L.1    Rosenzweig, A.C.2
  • 31
    • 0028090067 scopus 로고
    • Biochemistry of the soluble methane monooxygenase
    • Lipscomb JD. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48: 371-399.
    • (1994) Annu. Rev. Microbiol , vol.48 , pp. 371-399
    • Lipscomb, J.D.1
  • 32
    • 79955478327 scopus 로고    scopus 로고
    • Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid
    • Li T, Wang SJ, Yu CS, Ma YC, Li KL, Lin LW. 2011. Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid. Appl. Catal. A Gen. 398: 150-154.
    • (2011) Appl. Catal. A Gen , vol.398 , pp. 150-154
    • Li, T.1    Wang, S.J.2    Yu, C.S.3    Ma, Y.C.4    Li, K.L.5    Lin, L.W.6
  • 33
    • 84917739283 scopus 로고    scopus 로고
    • Worldwide look at reserves and production
    • Marilyn R. 2011. Worldwide look at reserves and production. Oil Gas J. 109: 26-29.
    • (2011) Oil Gas J , vol.109 , pp. 26-29
    • Marilyn, R.1
  • 34
    • 84884263177 scopus 로고    scopus 로고
    • Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study
    • Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. 2013. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front. Microbiol. 4: 1-16.
    • (2013) Front. Microbiol , vol.4 , pp. 1-16
    • Matsen, J.B.1    Yang, S.2    Stein, L.Y.3    Beck, D.4    Kalyuzhnaya, M.G.5
  • 35
    • 0036260181 scopus 로고    scopus 로고
    • New catalyst systems for the catalytic conversion of methane into methanol
    • Muehlhofer M, Strassner T, Herrmann WA. 2002. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. 41: 1745-1747.
    • (2002) Angew. Chem. Int. Ed , vol.41 , pp. 1745-1747
    • Muehlhofer, M.1    Strassner, T.2    Herrmann, W.A.3
  • 36
    • 0034192166 scopus 로고    scopus 로고
    • Regulation of expression of methane monooxygenases by copper ions
    • Murrell JC, McDonald IR, Gilbert B. 2000. Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol. 8: 221-225.
    • (2000) Trends Microbiol , vol.8 , pp. 221-225
    • Murrell, J.C.1    McDonald, I.R.2    Gilbert, B.3
  • 37
    • 84862567277 scopus 로고    scopus 로고
    • Biochemistry and molecular biology of methane monooxygenase
    • Timmis KN, Springer-Verlag
    • Murrell JC, Smith TJ. 2010. Biochemistry and molecular biology of methane monooxygenase, pp. 1046-1055. In Timmis KN (ed.). Handbook of Hydrocarbon and Lipid Microbiology (eds.). Springer-Verlag.
    • (2010) Handbook of Hydrocarbon and Lipid Microbiology , pp. 1046-1055
    • Murrell, J.C.1    Smith, T.J.2
  • 38
    • 0029884241 scopus 로고    scopus 로고
    • Regulation of bacterial methane oxidation: Transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions
    • Nielsen AK, Gerdes K, Degn H, Murrel JC. 1996. Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Soc. Gen. Microbiol. 142: 1289-1296.
    • (1996) Soc. Gen. Microbiol , vol.142 , pp. 1289-1296
    • Nielsen, A.K.1    Gerdes, K.2    Degn, H.3    Murrel, J.C.4
  • 39
    • 18844417483 scopus 로고    scopus 로고
    • Beyond oil and gas: The methanol economy
    • Olah GA. 2005. Beyond oil and gas: the methanol economy. Angew. Chem. 44: 2636-2639.
    • (2005) Angew. Chem , vol.44 , pp. 2636-2639
    • Olah, G.A.1
  • 40
    • 84876896467 scopus 로고    scopus 로고
    • Biological conversion of methane to methanol
    • Park D, Lee J. 2013. Biological conversion of methane to methanol. Kor. J. Chem. Eng. 30: 977-987.
    • (2013) Kor. J. Chem. Eng , vol.30 , pp. 977-987
    • Park, D.1    Lee, J.2
  • 41
    • 80052269504 scopus 로고    scopus 로고
    • Economic analysis of a combined energy–methanol production plant
    • Pellegrini LA, Soave G, Gamba S, Langè S. 2011. Economic analysis of a combined energy–methanol production plant. Appl. Energ. 88: 4891-4897.
    • (2011) Appl. Energ , vol.88 , pp. 4891-4897
    • Pellegrini, L.A.1    Soave, G.2    Gamba, S.3    Langè, S.4
  • 44
    • 0021911405 scopus 로고
    • The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath)
    • Prior SD, Dalton H. 1985. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155-163.
    • (1985) J. Gen. Microbiol , vol.131 , pp. 155-163
    • Prior, S.D.1    Dalton, H.2
  • 45
    • 0027849663 scopus 로고
    • Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: Comparison to deoxy and deoxy-azide hemerythrin
    • Pulver S, Froland WA, Fox BG, Lipscomb JD, Solomon EI. 1993. Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J. Am. Chem. Soc. 115: 12409-12422.
    • (1993) J. Am. Chem. Soc , vol.115 , pp. 12409-12422
    • Pulver, S.1    Froland, W.A.2    Fox, B.G.3    Lipscomb, J.D.4    Solomon, E.I.5
  • 46
    • 0003951980 scopus 로고
    • Methane conversion by oxidative processes
    • In Wolf EE (ed.), Van Nostrand Reinhold, New York
    • Reinhold VN. 1992. Methane conversion by oxidative processes. In Wolf EE (ed.). Fundamental and Engineering Aspects. Van Nostrand Reinhold, New York.
    • (1992) Fundamental and Engineering Aspects
    • Reinhold, V.N.1
  • 47
    • 0030885887 scopus 로고    scopus 로고
    • Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): Implications for substrate gating and component interactions
    • Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA. 1997. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Protein Struct. Funct. Genet. 29: 141-152.
    • (1997) Protein Struct. Funct. Genet , vol.29 , pp. 141-152
    • Rosenzweig, A.C.1    Brandstetter, H.2    Whittington, D.A.3    Nordlund, P.4    Lippard, S.J.5    Frederick, C.A.6
  • 48
    • 58849109320 scopus 로고    scopus 로고
    • Methanol-based industrial biotechnology: Current status and future perspectives of methylotrophic bacteria
    • Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA. 2008. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 27: 107-115.
    • (2008) Trends Biotechnol , vol.27 , pp. 107-115
    • Schrader, J.1    Schilling, M.2    Holtmann, D.3    Sell, D.4    Filho, M.V.5    Marx, A.6    Vorholt, J.A.7
  • 50
    • 0012233552 scopus 로고    scopus 로고
    • Activation of CH bonds by metal complexes
    • Shilov AE, Shul’pin GB. 1997. Activation of CH bonds by metal complexes. Chem. Rev. 97: 2879-2932.
    • (1997) Chem. Rev , vol.97 , pp. 2879-2932
    • Shilov, A.E.1    Shul’Pin, G.B.2
  • 51
    • 84863393532 scopus 로고    scopus 로고
    • Simultaneously mitigating near-term climate change and improving human health and food security
    • Shindell D, Kuylenstierna JCI, Vignati E, Dingenen RV, Amann M, Klimont Z, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335: 183-189.
    • (2012) Science , vol.335 , pp. 183-189
    • Shindell, D.1    Kuylenstierna, J.2    Vignati, E.3    Dingenen, R.V.4    Amann, M.5    Klimont, Z.6
  • 52
    • 0017899010 scopus 로고
    • Purification and properties of an NAD (P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath)
    • Stirling DI, Dalton H. 1978. Purification and properties of an NAD (P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J. Gen. Appl. Microbiol. 107: 19-29.
    • (1978) J. Gen. Appl. Microbiol , vol.107 , pp. 19-29
    • Stirling, D.I.1    Dalton, H.2
  • 53
    • 84875774267 scopus 로고    scopus 로고
    • High-rate, high-yield production of methanol by ammonia-oxidizing bacteria
    • Taher E, Chandran K. 2013. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ. Sci. Technol. 47: 3167-3173.
    • (2013) Environ. Sci. Technol , vol.47 , pp. 3167-3173
    • Taher, E.1    Chandran, K.2
  • 54
    • 0344925411 scopus 로고    scopus 로고
    • Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation
    • Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.
    • (1997) Appl. Biochem. Biotechnol , vol.68 , pp. 143-152
    • Takeguchi, M.1    Furuto, T.2    Sugimori, D.3    Okura, I.4
  • 55
    • 0034311053 scopus 로고    scopus 로고
    • Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b
    • Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jap. 4: 51-63.
    • (2000) Catal. Surv. Jap , vol.4 , pp. 51-63
    • Takeguchi, M.1    Okura, I.2
  • 56
    • 41349106563 scopus 로고    scopus 로고
    • Metabolic aspects of aerobic obligate methanotrophy
    • Trotsenko YA, Murrell JC. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183-229.
    • (2008) Adv. Appl. Microbiol , vol.63 , pp. 183-229
    • Trotsenko, Y.A.1    Murrell, J.C.2
  • 57
    • 8844264574 scopus 로고    scopus 로고
    • Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath)
    • Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. 2004. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). Plos Biol. 2: 1616-1628.
    • (2004) Plos Biol , vol.2 , pp. 1616-1628
    • Ward, N.1    Larsen, O.2    Sakwa, J.3    Bruseth, L.4    Khouri, H.5    Durkin, A.S.6
  • 58
    • 84864823033 scopus 로고    scopus 로고
    • Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas
    • Wood DA, Nwaoha C, Towler BF. 2012. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 9: 196-208.
    • (2012) J. Nat. Gas Sci. Eng , vol.9 , pp. 196-208
    • Wood, D.A.1    Nwaoha, C.2    Towler, B.F.3
  • 61
    • 33746626867 scopus 로고    scopus 로고
    • Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): A DFT and QM/MM study
    • Yoshizawa K, Shiota Y. 2006. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128: 9873-9881.
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 9873-9881
    • Yoshizawa, K.1    Shiota, Y.2
  • 62
    • 0035161053 scopus 로고    scopus 로고
    • Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath
    • Zahn JA, B ergmann DJ, Boyd J M, K unz RC, D iSpirito AA. 2001. Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J. Bacteriol. 183: 6832-6840.
    • (2001) J. Bacteriol , vol.183 , pp. 6832-6840
    • Zahn, J.A.1    B Ergmann, D.J.2    Boyd, J.M.3    K Unz, R.C.4    D Ispirito, A.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.