메뉴 건너뛰기




Volumn 48, Issue 3, 2015, Pages 616-627

Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection

Author keywords

Abnormality detection; Newborn EEG artifacts; ROC analysis; Seizure; Time frequency feature extraction

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; BRAIN; EXTRACTION; SIGNAL DETECTION;

EID: 84916629444     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.08.016     Document Type: Article
Times cited : (108)

References (44)
  • 1
    • 85032751080 scopus 로고    scopus 로고
    • Time-frequency processing of nonstationary signals advanced TFD design to aid diagnosis with highlights from medical applications
    • B. Boashash, G. Azemi, and J.M. O'Toole Time-frequency processing of nonstationary signals advanced TFD design to aid diagnosis with highlights from medical applications IEEE Signal Process. Mag. 30 6 2013 108 119
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.6 , pp. 108-119
    • Boashash, B.1    Azemi, G.2    O'Toole, J.M.3
  • 7
    • 35148875178 scopus 로고    scopus 로고
    • An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings
    • R. Hopfengrtner, F. Kerling, V. Bauer, and H. Stefan An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings Clin. Neurophysiol. 118 11 2007 2332 2343
    • (2007) Clin. Neurophysiol. , vol.118 , Issue.11 , pp. 2332-2343
    • Hopfengrtner, R.1    Kerling, F.2    Bauer, V.3    Stefan, H.4
  • 9
    • 29744467968 scopus 로고    scopus 로고
    • Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection
    • A. Subasi, E. Erelebi, A. Alkan, and E. Koklukaya Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection Comput. Biol. Med. 36 2 2006 195 208
    • (2006) Comput. Biol. Med. , vol.36 , Issue.2 , pp. 195-208
    • Subasi, A.1    Erelebi, E.2    Alkan, A.3    Koklukaya, E.4
  • 10
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • S. Altunay, Z. Telatar, and O. Erogul Epileptic EEG detection using the linear prediction error energy Expert Syst. Appl. 37 8 2010 5661 5665
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 11
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • N.F. Güler, E.D. Übeyli, and I. Güler Recurrent neural networks employing Lyapunov exponents for EEG signals classification Expert Syst. Appl. 29 3 2005 506 514
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 12
    • 79952161721 scopus 로고    scopus 로고
    • Time-frequency detection of slowly varying periodic signals with harmonics: Methods and performance evaluation
    • J.M. O'Toole, B. Boashash, Time-frequency detection of slowly varying periodic signals with harmonics: methods and performance evaluation, EURASIP J. Adv. Signal Process, 2011.
    • (2011) EURASIP J. Adv. Signal Process
    • O'Toole, J.M.1    Boashash, B.2
  • 13
    • 84889569001 scopus 로고    scopus 로고
    • Effective implementation of timefrequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures
    • M.S. Khlif, P.B. Colditz, and B. Boashash Effective implementation of timefrequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures Med. Eng. Phys. 35 12 2013 1762 1769
    • (2013) Med. Eng. Phys. , vol.35 , Issue.12 , pp. 1762-1769
    • Khlif, M.S.1    Colditz, P.B.2    Boashash, B.3
  • 14
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEGs using time-frequency analysis
    • A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis Epileptic seizure detection in EEGs using time-frequency analysis IEEE Trans. Inf. Technol. Biomed. 13 September (5) 2009 703 710
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.SEPTEMBER 5 , pp. 703-710
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 15
    • 33846629898 scopus 로고    scopus 로고
    • Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
    • A. Delorme, T. Sejnowski, and S. Makeig Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis NeuroImage 34 4 2007 1443 1449
    • (2007) NeuroImage , vol.34 , Issue.4 , pp. 1443-1449
    • Delorme, A.1    Sejnowski, T.2    Makeig, S.3
  • 16
    • 62949243316 scopus 로고    scopus 로고
    • Automated detection and selection of artifacts in encephalography signals
    • R. Taha Al-Kasasbeh, M. Salman Shamaseen, and D.E. Skopin Automated detection and selection of artifacts in encephalography signals Biomed. Eng. 42 6 2008 293 301
    • (2008) Biomed. Eng. , vol.42 , Issue.6 , pp. 293-301
    • Taha Al-Kasasbeh, R.1    Salman Shamaseen, M.2    Skopin, D.E.3
  • 17
    • 79951791430 scopus 로고    scopus 로고
    • ADJUST an automatic EEG artifact detector based on the joint use of spatial and temporal features
    • A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti ADJUST an automatic EEG artifact detector based on the joint use of spatial and temporal features Psychophysiology 48 2 2011 229 240
    • (2011) Psychophysiology , vol.48 , Issue.2 , pp. 229-240
    • Mognon, A.1    Jovicich, J.2    Bruzzone, L.3    Buiatti, M.4
  • 21
    • 84916627075 scopus 로고    scopus 로고
    • Technical Report., Qatar University, College of Engineering, Doha, Qatar, June
    • B. Boashash, N.A. Khan, NPRP 4-1303-2-517, 6th Monthly Report, Technical Report., Qatar University, College of Engineering, Doha, Qatar, June 2014.
    • (2014) NPRP 4-1303-2-517, 6th Monthly Report
    • Boashash, B.1    Khan, N.A.2
  • 22
    • 0001930581 scopus 로고
    • Time-frequency analysis in machine fault detection
    • B. Boashash, Longman-Cheshire/Wiley (Chapter 18)
    • B.D. Forrester Time-frequency analysis in machine fault detection B. Boashash, Time-Frequency Signal Analysis: Methods and Applications 1992 Longman-Cheshire/Wiley 406 423 (Chapter 18)
    • (1992) Time-Frequency Signal Analysis: Methods and Applications , pp. 406-423
    • Forrester, B.D.1
  • 25
    • 84857830653 scopus 로고    scopus 로고
    • Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Renyi entropy
    • V. Sucic, N. Saulig, and B. Boashash Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Renyi entropy EURASIP J. Adv. Signal Process. 2011 1 2011 1 11
    • (2011) EURASIP J. Adv. Signal Process. , vol.2011 , Issue.1 , pp. 1-11
    • Sucic, V.1    Saulig, N.2    Boashash, B.3
  • 26
    • 84937035392 scopus 로고
    • Estimating and interpreting the instantaneous frequency of a signal. I fundamentals
    • B. Boashash Estimating and interpreting the instantaneous frequency of a signal. I. fundamentals Proc. IEEE 80 April (4) 1992 520 538
    • (1992) Proc. IEEE , vol.80 , Issue.APRIL 4 , pp. 520-538
    • Boashash, B.1
  • 27
    • 84941871268 scopus 로고
    • Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications
    • B. Boashash Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications Proc. IEEE 80 April (4) 1992 540 568
    • (1992) Proc. IEEE , vol.80 , Issue.APRIL 4 , pp. 540-568
    • Boashash, B.1
  • 28
    • 14544267776 scopus 로고    scopus 로고
    • Time-frequency feature extraction of newborn EEG seizure using SVD-based techniques
    • H. Hassanpour, M. Mesbah, and B. Boashash Time-frequency feature extraction of newborn EEG seizure using SVD-based techniques EURASIP J. Appl. Signal Process. 2004 January 2004 2544 2554
    • (2004) EURASIP J. Appl. Signal Process. , vol.2004 , Issue.JANUARY , pp. 2544-2554
    • Hassanpour, H.1    Mesbah, M.2    Boashash, B.3
  • 29
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim, and H. Park Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method SIAM J. Matrix Anal. Appl. 30 2 2008 713 730
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 30
    • 78751613317 scopus 로고    scopus 로고
    • EEG-based neonatal seizure detection with support vector machines
    • A. Temko, E. Thomas, W. Marnane, G. Lightbody, and G. Boylan EEG-based neonatal seizure detection with support vector machines Clin. Neurophysiol. 122 3 2011 464 473
    • (2011) Clin. Neurophysiol. , vol.122 , Issue.3 , pp. 464-473
    • Temko, A.1    Thomas, E.2    Marnane, W.3    Lightbody, G.4    Boylan, G.5
  • 31
    • 85008548582 scopus 로고    scopus 로고
    • Time-frequency matrix feature extraction and classification of environmental audio signals
    • B. Ghoraani, and S. Krishnan Time-frequency matrix feature extraction and classification of environmental audio signals IEEE Trans. Audio Speech Lang. Process. 19 7 2011 2197 2209
    • (2011) IEEE Trans. Audio Speech Lang. Process. , vol.19 , Issue.7 , pp. 2197-2209
    • Ghoraani, B.1    Krishnan, S.2
  • 33
    • 56749180547 scopus 로고    scopus 로고
    • Time-frequency feature representation using energy concentration an overview of recent advances
    • E. Sejdic, I. Djurovic, and J. Jiang Time-frequency feature representation using energy concentration an overview of recent advances Elsevier Digital Signal Process. 19 1 2009 153 183
    • (2009) Elsevier Digital Signal Process. , vol.19 , Issue.1 , pp. 153-183
    • Sejdic, E.1    Djurovic, I.2    Jiang, J.3
  • 34
    • 0035276299 scopus 로고    scopus 로고
    • A measure of some time-frequency distributions concentration
    • L. Stankovic A measure of some time-frequency distributions concentration Signal Process. 81 3 2001 621 631
    • (2001) Signal Process. , vol.81 , Issue.3 , pp. 621-631
    • Stankovic, L.1
  • 36
    • 32444446490 scopus 로고    scopus 로고
    • Automated neonatal seizure detection a multistage classification system through feature selection based on relevance and redundancy analysis
    • A. Aarabi, F. Wallois, and R. Grebe Automated neonatal seizure detection a multistage classification system through feature selection based on relevance and redundancy analysis Clin. Neurophysiol. 117 2 2006 328 340
    • (2006) Clin. Neurophysiol. , vol.117 , Issue.2 , pp. 328-340
    • Aarabi, A.1    Wallois, F.2    Grebe, R.3
  • 37
    • 34548534041 scopus 로고    scopus 로고
    • Characterization of neonatal seizures by conventional EEG and single-channel EEG
    • R.A. Shellhaas, and R.R. Clancy Characterization of neonatal seizures by conventional EEG and single-channel EEG Clin. Neurophysiol. 118 10 2007 2156 2161
    • (2007) Clin. Neurophysiol. , vol.118 , Issue.10 , pp. 2156-2161
    • Shellhaas, R.A.1    Clancy, R.R.2
  • 38
    • 84862114927 scopus 로고    scopus 로고
    • Detection and classification of subject-generated artifacts in EEG signals using autoregressive models
    • V. Lawhern, W.D. Hairston, K. McDowell, M. Westerfield, and K. Robbins Detection and classification of subject-generated artifacts in EEG signals using autoregressive models J. Neurosci. Methods 208 2 2012 181 189
    • (2012) J. Neurosci. Methods , vol.208 , Issue.2 , pp. 181-189
    • Lawhern, V.1    Hairston, W.D.2    McDowell, K.3    Westerfield, M.4    Robbins, K.5
  • 41
    • 34247179140 scopus 로고    scopus 로고
    • A review of classification algorithms for EEG-based brain-computer interfaces
    • F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi A review of classification algorithms for EEG-based brain-computer interfaces J. Neural Eng. 4 June (2) 2007
    • (2007) J. Neural Eng. , vol.4 , Issue.JUNE 2
    • Lotte, F.1    Congedo, M.2    Lécuyer, A.3    Lamarche, F.4    Arnaldi, B.5
  • 42
    • 84869001869 scopus 로고    scopus 로고
    • A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals
    • B. Boashash, L. Boubchir, and G. Azemi A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals EURASIP J. Adv. Signal Process. 2012 2012 1 21
    • (2012) EURASIP J. Adv. Signal Process. , vol.2012 , pp. 1-21
    • Boashash, B.1    Boubchir, L.2    Azemi, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.