메뉴 건너뛰기




Volumn 54, Issue , 2015, Pages 259-276

Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis

Author keywords

Fault diagnosis; Manifold learning; Permutation entropy; Rolling element bearing; Wavelet packet transform

Indexed keywords

CLUSTERING ALGORITHMS; ENTROPY; FAILURE ANALYSIS; FAULT DETECTION; ROLLER BEARINGS; SIGNAL TO NOISE RATIO; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 84916198296     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2014.09.002     Document Type: Article
Times cited : (245)

References (46)
  • 1
    • 79953838303 scopus 로고    scopus 로고
    • Application of an improved kurtogram method for fault diagnosis of rolling element bearings
    • Y.G. Lei, J. Lin, and Z.J. He Application of an improved kurtogram method for fault diagnosis of rolling element bearings Mech. Syst. Signal Process. 25 2011 1738 1749
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 1738-1749
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3
  • 2
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with gas
    • Y.G. Lei, Z.J. He, and Y.Y. Zi Fault diagnosis of rotating machinery based on multiple ANFIS combination with gas Mech. Syst. Signal Process. 21 2007 2280 2294
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2280-2294
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 3
    • 0036905835 scopus 로고    scopus 로고
    • Spectrogram segmentation by means of statistical features for non-stationary signal interpretation
    • C. Hory, N. Martin, and A. Chehikian Spectrogram segmentation by means of statistical features for non-stationary signal interpretation Signal Process. IEEE Trans. 12 2002 2915 2925
    • (2002) Signal Process. IEEE Trans. , vol.12 , pp. 2915-2925
    • Hory, C.1    Martin, N.2    Chehikian, A.3
  • 4
    • 0002056352 scopus 로고    scopus 로고
    • A method for the automatic detection and measurement of transients. Part I: The measurement method
    • L. Angrisani, P. Daponte, and M. D'Apuzzo A method for the automatic detection and measurement of transients. Part I: the measurement method Measurement 25 1999 19 30
    • (1999) Measurement , vol.25 , pp. 19-30
    • Angrisani, L.1    Daponte, P.2    D'Apuzzo, M.3
  • 5
    • 0038374456 scopus 로고    scopus 로고
    • A stochastic model for simulation and diagnostics of rolling element bearings with localized faults
    • J. Antoni, R.B. Randall. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. Journal of Vibration and Acoustics, vol. 125 (3), pp. 282-289.
    • Journal of Vibration and Acoustics , vol.125 , Issue.3 , pp. 282-289
    • Antoni, J.1    Randall, R.B.2
  • 6
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on roller bearing prognostics
    • H. Qiu, J. Lee, J. Lin, and G. Yu Wavelet filter-based weak signature detection method and its application on roller bearing prognostics J. Sound Vib. 289 2006 1066 1090
    • (2006) J. Sound Vib. , vol.289 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 11
    • 33749508107 scopus 로고    scopus 로고
    • Fast computation of the kurtogram for the detection of transient faults
    • J. Antoni Fast computation of the kurtogram for the detection of transient faults Mech. Syst. Signal Process. 21 2007 108 124
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 108-124
    • Antoni, J.1
  • 12
    • 84870401853 scopus 로고    scopus 로고
    • An enhanced Kurtogram method for fault diagnosis of rolling element bearings
    • D. Wang, P.W. Tse, and K.L. Tsui An enhanced Kurtogram method for fault diagnosis of rolling element bearings Mech. Syst. Signal Process. 35 2013 176 199
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 176-199
    • Wang, D.1    Tse, P.W.2    Tsui, K.L.3
  • 13
    • 78349312157 scopus 로고    scopus 로고
    • A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram
    • T. Barszcz, and A. JabLonski A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram Mech. Syst. Signal Process. 25 2011 431 451
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 431-451
    • Barszcz, T.1    Jablonski, A.2
  • 14
    • 84883889623 scopus 로고    scopus 로고
    • The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2
    • P.W. Tse, and D. Wang The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2 Mech. Syst. Signal Process. 40 2013 520 544
    • (2013) Mech. Syst. Signal Process. , vol.40 , pp. 520-544
    • Tse, P.W.1    Wang, D.2
  • 15
    • 80055012780 scopus 로고    scopus 로고
    • Identification of multiple transient faults based on the adaptive spectral kurtosis method
    • Y. Wang, and M. Liang Identification of multiple transient faults based on the adaptive spectral kurtosis method J. Sound Vib. 331 2012 470 486
    • (2012) J. Sound Vib. , vol.331 , pp. 470-486
    • Wang, Y.1    Liang, M.2
  • 16
    • 0036532606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet packets
    • N.G. Nikolaou, and I.A. Antoniadis Rolling element bearing fault diagnosis using wavelet packets NDT & E Int. 35 2002 197 205
    • (2002) NDT & e Int. , vol.35 , pp. 197-205
    • Nikolaou, N.G.1    Antoniadis, I.A.2
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 2000 2323 2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319 2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 19
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Z. Zhang, and H. Zha Principal manifolds and nonlinear dimensionality reduction via tangent space alignment J. Scientific Comput. 26 2005 313 338
    • (2005) J. Scientific Comput. , vol.26 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 20
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 21
    • 67651155773 scopus 로고    scopus 로고
    • Multiple manifolds analysis and its application to fault diagnosis
    • M. Li, J. Xu, and J. Yang Multiple manifolds analysis and its application to fault diagnosis Mech. Syst. Signal Process. 23 2009 2500 2509
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 2500-2509
    • Li, M.1    Xu, J.2    Yang, J.3
  • 22
    • 67349249907 scopus 로고    scopus 로고
    • Machinery fault diagnosis using supervised manifold learning
    • Q. Jiang, M. Jia, and J. Hu Machinery fault diagnosis using supervised manifold learning Mech. Syst. Signal Process. 23 2009 2301 2311
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 2301-2311
    • Jiang, Q.1    Jia, M.2    Hu, J.3
  • 23
    • 67349249211 scopus 로고    scopus 로고
    • Distance similarity matrix using ensemble of dimensional data reduction techniques: Vibration and aerocoustic case studies
    • I. Lopez, and N. Sarigul-Klijn Distance similarity matrix using ensemble of dimensional data reduction techniques: vibration and aerocoustic case studies Mech. Syst. Signal Process. 23 2009 2287 2300
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 2287-2300
    • Lopez, I.1    Sarigul-Klijn, N.2
  • 24
    • 84872776720 scopus 로고    scopus 로고
    • Vibration signal classification by wavelet packet energy flow manifold learning
    • Q. He Vibration signal classification by wavelet packet energy flow manifold learning J. Sound Vib. 332 2012 1881 1894
    • (2012) J. Sound Vib. , vol.332 , pp. 1881-1894
    • He, Q.1
  • 25
    • 84885661664 scopus 로고    scopus 로고
    • Feature extraction based on semi-supervised kernel marginal Fisher analysis and its application in bearing fault diagnosis
    • L. Jiang, J. Xuan, and T. Shi Feature extraction based on semi-supervised kernel marginal Fisher analysis and its application in bearing fault diagnosis Mech. Syst. Signal Process. 41 2013 113 126
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 113-126
    • Jiang, L.1    Xuan, J.2    Shi, T.3
  • 26
    • 84888260875 scopus 로고    scopus 로고
    • Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbour classifier
    • Z. Su, B. Tang, and J. Ma Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbour classifier Measurement 48 2014 136 148
    • (2014) Measurement , vol.48 , pp. 136-148
    • Su, Z.1    Tang, B.2    Ma, J.3
  • 27
    • 84880675844 scopus 로고    scopus 로고
    • Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
    • B. Tang, T. Song, and F. Li Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine Renew. Energy 62 2014 1 9
    • (2014) Renew. Energy , vol.62 , pp. 1-9
    • Tang, B.1    Song, T.2    Li, F.3
  • 28
    • 84870255869 scopus 로고    scopus 로고
    • Discriminant diffusion maps analysis: A robust manifold learner for dimensionality reduction and its applications in machine condition monitoring and fault diagnosis
    • Y. Huang, X.F. Zha, and J. Lee Discriminant diffusion maps analysis: a robust manifold learner for dimensionality reduction and its applications in machine condition monitoring and fault diagnosis Mech. Syst. Signal Process. 34 2013 277 297
    • (2013) Mech. Syst. Signal Process. , vol.34 , pp. 277-297
    • Huang, Y.1    Zha, X.F.2    Lee, J.3
  • 29
    • 84870239552 scopus 로고    scopus 로고
    • Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis
    • Z. Li, X. Yan, and Z. Tian Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis Measurement 46 2013 259 271
    • (2013) Measurement , vol.46 , pp. 259-271
    • Li, Z.1    Yan, X.2    Tian, Z.3
  • 30
    • 84875473802 scopus 로고    scopus 로고
    • Time-frequency manifold correlation matching for periodic fault identification in rotating machines
    • Q. He, and X. Wang Time-frequency manifold correlation matching for periodic fault identification in rotating machines J. Sound Vib. 332 2013 2611 2626
    • (2013) J. Sound Vib. , vol.332 , pp. 2611-2626
    • He, Q.1    Wang, X.2
  • 31
    • 84881310676 scopus 로고    scopus 로고
    • Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis
    • J. Wang, Q. He, and F. Kong Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis Mech. Syst. Signal Process. 40 2013 237 256
    • (2013) Mech. Syst. Signal Process. , vol.40 , pp. 237-256
    • Wang, J.1    He, Q.2    Kong, F.3
  • 32
    • 84870468265 scopus 로고    scopus 로고
    • Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis
    • Q. He Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis Mech. Syst. Signal Process. 35 2013 200 218
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 200-218
    • He, Q.1
  • 33
    • 58249086377 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of manifolds by incising balls
    • M.Y. Fan, H. Qiao, and B. Zhang Intrinsic dimension estimation of manifolds by incising balls Pattern Recognit. 42 2009 780 787
    • (2009) Pattern Recognit. , vol.42 , pp. 780-787
    • Fan, M.Y.1    Qiao, H.2    Zhang, B.3
  • 34
    • 68649111457 scopus 로고    scopus 로고
    • Spectral properties of the alignment matrices in manifold learning
    • H. Zha, and Z. Zhang Spectral properties of the alignment matrices in manifold learning SIAM Rev. 51 2009 545 566
    • (2009) SIAM Rev. , vol.51 , pp. 545-566
    • Zha, H.1    Zhang, Z.2
  • 35
    • 34548616369 scopus 로고    scopus 로고
    • A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection
    • I.S. Bozchalooi, and M. Liang A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection J. Sound Vib. 308 2007 246 267
    • (2007) J. Sound Vib. , vol.308 , pp. 246-267
    • Bozchalooi, I.S.1    Liang, M.2
  • 36
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • C. Bandt, and B. Pompe Permutation entropy: a natural complexity measure for time series Phys. Rev. Lett. 88 2002 174102-1 174102-4
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 1741021-1741024
    • Bandt, C.1    Pompe, B.2
  • 37
    • 84859427324 scopus 로고    scopus 로고
    • Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines
    • R.Q. Yan, Y.B. Liu, and R.X. Gao Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines Mech. Syst. Signal Process. 29 2012 474 484
    • (2012) Mech. Syst. Signal Process. , vol.29 , pp. 474-484
    • Yan, R.Q.1    Liu, Y.B.2    Gao, R.X.3
  • 38
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • X. Lou, and K.A. Loparo Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Signal Process. 18 2004 1077 1095
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 39
    • 0141988763 scopus 로고    scopus 로고
    • Wavelet transform with spectral post-processing for enhanced feature extraction
    • C. Wang, and R.X. Gao Wavelet transform with spectral post-processing for enhanced feature extraction Instrum. Meas. IEEE Trans. 52 2003 1296 1301
    • (2003) Instrum. Meas. IEEE Trans. , vol.52 , pp. 1296-1301
    • Wang, C.1    Gao, R.X.2
  • 40
    • 18444379354 scopus 로고    scopus 로고
    • Selection of wavelet packet basis for rotating machinery fault diagnosis
    • B. Liu Selection of wavelet packet basis for rotating machinery fault diagnosis J. Sound Vib. 284 2005 567 582
    • (2005) J. Sound Vib. , vol.284 , pp. 567-582
    • Liu, B.1
  • 41
    • 33644796862 scopus 로고    scopus 로고
    • A wavelet packet based sifting process and its application for structural health monitoring
    • A. Shinde, and Z. Hou A wavelet packet based sifting process and its application for structural health monitoring Struct. Health Monit. 4 2005 153 170
    • (2005) Struct. Health Monit. , vol.4 , pp. 153-170
    • Shinde, A.1    Hou, Z.2
  • 42
    • 84859777883 scopus 로고    scopus 로고
    • Heath monitoring of a glass transfer robot in the mass production line of liquid crystal display using abnormal operating sounds based on wavelet packet transform and artificial neural network
    • E.Y. Kim, Y.J. Lee, and S.K. Lee Heath monitoring of a glass transfer robot in the mass production line of liquid crystal display using abnormal operating sounds based on wavelet packet transform and artificial neural network J. Sound Vib. 331 2012 3412 3427
    • (2012) J. Sound Vib. , vol.331 , pp. 3412-3427
    • Kim, E.Y.1    Lee, Y.J.2    Lee, S.K.3
  • 43
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics - A tutorial
    • R.B. Randall, and J. Antoni Rolling element bearing diagnostics - a tutorial Mech. Syst. Signal Process. 25 2011 485 520
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 44
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • H. Qiu, J. Lee, and J. Lin Robust performance degradation assessment methods for enhanced rolling element bearing prognostics Adv. Eng. Inform. 17 2003 127 140
    • (2003) Adv. Eng. Inform. , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3
  • 45
    • 79955828997 scopus 로고    scopus 로고
    • Moffett Field, CA: IMS, Univ. Cincinnati. NASA Ames Prognostics Data Repository, NASA Ames
    • J., Lee, H. Qiu, G. Yu, et al., Rexnord Technical Services: Bearing Data Set, Moffett Field, CA: IMS, Univ. Cincinnati. NASA Ames Prognostics Data Repository, NASA Ames, 2007.
    • (2007) Rexnord Technical Services: Bearing Data Set
    • Lee, J.1    Qiu, H.2    Yu, G.3
  • 46
    • 84916228067 scopus 로고    scopus 로고
    • accessed 01.04.11
    • 〈http://www.eecs.case.edu/laboratory/bearing〉 (accessed 01.04.11).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.