메뉴 건너뛰기




Volumn 8817, Issue , 2014, Pages 81-96

Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey

Author keywords

Machine learning; Renewable energy; Smart grids

Indexed keywords

ARTIFICIAL INTELLIGENCE; CRUDE OIL; GEOTHERMAL ENERGY; LEARNING ALGORITHMS; LEARNING SYSTEMS; RENEWABLE ENERGY RESOURCES; SMALL POWER PLANTS; SURVEYS;

EID: 84912559024     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-13290-7_7     Document Type: Article
Times cited : (63)

References (42)
  • 1
    • 78649784171 scopus 로고    scopus 로고
    • United States Department of Energy: 2012 renewable energy data book (2012). http://www.nrel.gov/docs/fy14osti/60197.pdf
    • (2012) 2012 Renewable Energy Data Book
  • 3
    • 60049087500 scopus 로고    scopus 로고
    • Discussion about short-term forecast of wind speed on wind farm
    • Guoyang, W., Yang, X., Shasha, W.: Discussion about short-term forecast of wind speed on wind farm. Jilin Electr. Power 181, 21-24 (2005)
    • (2005) Jilin Electr. Power , vol.181 , pp. 21-24
    • Guoyang, W.1    Yang, X.2    Shasha, W.3
  • 4
    • 33846163459 scopus 로고    scopus 로고
    • Wind speed forecast model for wind farms based on time series analysis
    • Ding, M., Zhang, L.J., Wu, Y.C.: Wind speed forecast model for wind farms based on time series analysis. Electr. Power Autom. Equipment 25, 32-34 (2005)
    • (2005) Electr. Power Autom. Equipment , vol.25 , pp. 32-34
    • Ding, M.1    Zhang, L.J.2    Wu, Y.C.3
  • 5
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos, A.: A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energ. 21, 23-35 (2000)
    • (2000) Renew. Energ , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 6
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • Sfetsos, A.: A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energ. 27, 163-174 (2002)
    • (2002) Renew. Energ , vol.27 , pp. 163-174
    • Sfetsos, A.1
  • 7
  • 9
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.S.: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energ. Convers. 19, 352-361 (2004)
    • (2004) IEEE Trans. Energ. Convers , vol.19 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 11
    • 79961128617 scopus 로고    scopus 로고
    • Nested ensemble NWP approach for wind energy assessment
    • Al-Yahyai, S., Charabi, Y., Al-Badi, A., Gastli, A.: Nested ensemble NWP approach for wind energy assessment. Renew. Energ. 37, 150-160 (2012)
    • (2012) Renew. Energ , vol.37 , pp. 150-160
    • Al-Yahyai, S.1    Charabi, Y.2    Al-Badi, A.3    Gastli, A.4
  • 12
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Jursa, R., Rohrig, K.: Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast. 24, 694-709 (2008)
    • (2008) Int. J. Forecast , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 14
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renew. Energ. 37, 1-8 (2012)
    • (2012) Renew. Energ , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 15
    • 0032682090 scopus 로고    scopus 로고
    • Artificial neural networks used for the performance prediction of a thermosiphon solar water heater
    • Kalogirou, S.A., Panteliou, S., Dentsoras, A.: Artificial neural networks used for the performance prediction of a thermosiphon solar water heater. Renew. Energ. 18, 87-99 (1999)
    • (1999) Renew. Energ , vol.18 , pp. 87-99
    • Kalogirou, S.A.1    Panteliou, S.2    Dentsoras, A.3
  • 18
    • 84880379200 scopus 로고    scopus 로고
    • Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
    • Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energ. Rev. 27, 65-76 (2013)
    • (2013) Renew. Sustain. Energ. Rev , vol.27 , pp. 65-76
    • Diagne, M.1    David, M.2    Lauret, P.3    Boland, J.4    Schmutz, N.5
  • 19
    • 0028397218 scopus 로고
    • Using recurrent neural networks for adaptive communication channel equalization
    • Kechriotis, G., Zervas, E., Manolakos, E.S.: Using recurrent neural networks for adaptive communication channel equalization. IEEE Trans. Neural Netw. 5, 267-278 (1994)
    • (1994) IEEE Trans. Neural Netw , vol.5 , pp. 267-278
    • Kechriotis, G.1    Zervas, E.2    Manolakos, E.S.3
  • 21
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270-280 (1989)
    • (1989) Neural Comput , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 22
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong, W.C.: Rainfall forecasting by technological machine learning models. Appl. Math. Comput. 200, 41-57 (2008)
    • (2008) Appl. Math. Comput , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 24
    • 0026970604 scopus 로고
    • Optimal hydro generator governor tuning with a genetic algorithm
    • Lansberry, J.E., Wozniak, L.: Optimal hydro generator governor tuning with a genetic algorithm. IEEE Trans. Energ. Convers. 7, 623-630 (1992)
    • (1992) IEEE Trans. Energ. Convers , vol.7 , pp. 623-630
    • Lansberry, J.E.1    Wozniak, L.2
  • 25
    • 0029504669 scopus 로고
    • Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants
    • Djukanovic, M., Novicevic, M., Dobrijevic, D.J., et al.: Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants. IEEE Trans. Energ. Convers. 10, 760-767 (1995)
    • (1995) IEEE Trans. Energ. Convers , vol.10 , pp. 760-767
    • Djukanovic, M.1    Novicevic, M.2    Dobrijevic, D.J.3
  • 26
    • 0031379604 scopus 로고    scopus 로고
    • Neuro-fuzzy controller of low head power plants using adaptive-network based fuzzy inference system
    • Djukanovic, M.B., Calovic, M.S., Vesovic, B.V., Sobajic, D.J.: Neuro-fuzzy controller of low head power plants using adaptive-network based fuzzy inference system. IEEE Trans. Energ. Convers. 12, 375-381 (1997)
    • (1997) IEEE Trans. Energ. Convers , vol.12 , pp. 375-381
    • Djukanovic, M.B.1    Calovic, M.S.2    Vesovic, B.V.3    Sobajic, D.J.4
  • 27
    • 0005692387 scopus 로고    scopus 로고
    • Coordinatedstabilizing control for the exciter and governor loops using fuzzy set theory and neural nets
    • Djukanovic, M.B., Calovic, M.S., Vesovic, B.V., Sobajic, D.J.: Coordinatedstabilizing control for the exciter and governor loops using fuzzy set theory and neural nets. Int. J. Electr. Power Energ. Syst. 19, 489-499 (1997)
    • (1997) Int. J. Electr. Power Energ. Syst , vol.19 , pp. 489-499
    • Djukanovic, M.B.1    Calovic, M.S.2    Vesovic, B.V.3    Sobajic, D.J.4
  • 30
    • 33847657519 scopus 로고    scopus 로고
    • Optimal configuration of power generating systems in isolated island with renewable energy
    • Senjyua, T., Hayashia, D., Yonaa, A., Urasakia, N., Funabashib, T.: Optimal configuration of power generating systems in isolated island with renewable energy. Renew. Energ. 32, 1917-1933 (2007)
    • (2007) Renew. Energ , vol.32 , pp. 1917-1933
    • Senjyua, T.1    Hayashia, D.2    Yonaa, A.3    Urasakia, N.4    Funabashib, T.5
  • 31
    • 0028546835 scopus 로고
    • Multiobjective optimal unit sizing of hybrid power generation systems utilizing photovoltaic and wind energy
    • Yokoyama, R., Ito, K., Yuasa, Y.: Multiobjective optimal unit sizing of hybrid power generation systems utilizing photovoltaic and wind energy. J. Sol. Energ. Eng. 116, 167-173 (1994)
    • (1994) J. Sol. Energ. Eng , vol.116 , pp. 167-173
    • Yokoyama, R.1    Ito, K.2    Yuasa, Y.3
  • 32
    • 33847633431 scopus 로고    scopus 로고
    • Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders
    • Hernádeza, J.C., Medinaa, A., Juradob, F.: Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders. Renew. Energ. 32, 1768-1789 (2007)
    • (2007) Renew. Energ , vol.32 , pp. 1768-1789
    • Hernádeza, J.C.1    Medinaa, A.2    Juradob, F.3
  • 33
    • 79960154497 scopus 로고    scopus 로고
    • A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity
    • Azadeh, A., Sheikhalishahi, M., Asadzadeh, S.M.: A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity. Renew. Energ. 36, 3394-3401 (2011)
    • (2011) Renew. Energ , vol.36 , pp. 3394-3401
    • Azadeh, A.1    Sheikhalishahi, M.2    Asadzadeh, S.M.3
  • 41
    • 84883214642 scopus 로고    scopus 로고
    • Lossless compression of wind plant data
    • Louie, H., Miguel, A.: Lossless compression of wind plant data. IEEE Trans. Sustain. Energ. 3, 598-606 (2012)
    • (2012) IEEE Trans. Sustain. Energ , vol.3 , pp. 598-606
    • Louie, H.1    Miguel, A.2
  • 42
    • 79951923355 scopus 로고    scopus 로고
    • Managing massive time series streams with multi-scale compressed trickles
    • Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time series streams with multi-scale compressed trickles. Proc. VLDB Endowment 2, 97-108 (2009)
    • (2009) Proc. VLDB Endowment , vol.2 , pp. 97-108
    • Reeves, G.1    Liu, J.2    Nath, S.3    Zhao, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.