메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 200-214

b-COELM: A fast, lightweight and accurate activity recognition model for mini-wearable devices

Author keywords

Activity recognition; Extreme learning machine; Proximal support vector machine; Wearable device

Indexed keywords

COMPUTATIONAL COMPLEXITY; KNOWLEDGE ACQUISITION; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 84912150112     PISSN: 15741192     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pmcj.2014.06.002     Document Type: Article
Times cited : (30)

References (72)
  • 1
    • 80054061029 scopus 로고    scopus 로고
    • Enabling large-scale human activity inference on smartphones using community similarity networks (CSN)
    • N.D. Lane, et al., Enabling large-scale human activity inference on smartphones using community similarity networks (CSN), in: Proceedings of the ACM Conference on Ubiquitous Computing, 2011, pp. 355-364.
    • Proceedings of the ACM Conference on Ubiquitous Computing, 2011 , pp. 355-364
    • Lane, N.D.1
  • 4
    • 84879488772 scopus 로고    scopus 로고
    • Mobile posture monitoring system to prevent physical health risk of smartphone users
    • H. Lee, et al., Mobile posture monitoring system to prevent physical health risk of smartphone users, in: Proceedings of the ACM Conference on Ubiquitous Computing, 2012, pp. 592-593.
    • Proceedings of the ACM Conference on Ubiquitous Computing, 2012 , pp. 592-593
    • Lee, H.1
  • 9
    • 84885223535 scopus 로고    scopus 로고
    • COPDTrainer: A smartphone-based motion rehabilitation training system with real-time acoustic feedback
    • G. Spina, et al., COPDTrainer: a smartphone-based motion rehabilitation training system with real-time acoustic feedback, in: Proceedings of the ACM Conference on Ubiquitous Computing, 2013, pp. 597-606.
    • Proceedings of the ACM Conference on Ubiquitous Computing, 2013 , pp. 597-606
    • Spina, G.1
  • 13
    • 84912150605 scopus 로고    scopus 로고
    • Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones
    • R. Wang, et al., Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones, in: Proceedings of the ACM Conference on Ubiquitous Computing, 2014.
    • Proceedings of the ACM Conference on Ubiquitous Computing, 2014
    • Wang, R.1
  • 28
    • 79955648715 scopus 로고    scopus 로고
    • Limb movements classification using wearable wireless transceivers
    • R. Guraliuc, et al., Limb movements classification using wearable wireless transceivers, IEEE Trans. Inform. Technol. Biomed. 15 (3) (2011) 474-480.
    • (2011) IEEE Trans. Inform. Technol. Biomed. , vol.15 , Issue.3 , pp. 474-480
    • Guraliuc, R.1
  • 29
    • 35048842427 scopus 로고    scopus 로고
    • Activity Recognition from User-Annotated Acceleration Data
    • L. Bao, S.S. Intille, Activity Recognition from User-Annotated Acceleration Data, in: Lecture Notes in Computer Science, vol. 3001, 2004, pp. 1-17.
    • (2004) Lecture Notes in Computer Science , vol.3001 , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 34
    • 80054964826 scopus 로고    scopus 로고
    • Activity recognition using cell phone accelerometers
    • J.R. Kwapisz, et al., Activity recognition using cell phone accelerometers, ACM SIGKDD Explor. Newslett. 12 (2) (2010) 74-82.
    • (2010) ACM SIGKDD Explor. Newslett. , vol.12 , Issue.2 , pp. 74-82
    • Kwapisz, J.R.1
  • 35
    • 70350267046 scopus 로고    scopus 로고
    • Activity Recognition for Everyday Life on Mobile Phones
    • G. Bieber, et al., Activity Recognition for Everyday Life on Mobile Phones, in: Lecture Notes in Computer Science, vol. 5615, 2009, pp. 289-296.
    • (2009) Lecture Notes in Computer Science , vol.5615 , pp. 289-296
    • Bieber, G.1
  • 36
    • 77952661042 scopus 로고    scopus 로고
    • Activity Recognition from Aaccelerometer Data on a Mobile Phone
    • T. Brezmes, et al., Activity Recognition from Aaccelerometer Data on a Mobile Phone, in: Lecture Notes in Computer Science, vol. 5518, 2009, pp. 796-799.
    • (2009) Lecture Notes in Computer Science , vol.5518 , pp. 796-799
    • Brezmes, T.1
  • 39
    • 84885202234 scopus 로고    scopus 로고
    • Preference, context and communities: A multi-faceted approach to predicting smartphone app usage patterns
    • Y. Xu, et al., Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns, in: Proceedings of the 17th ACM International Symposium on Wearable Computers, 2013, pp. 69-76.
    • Proceedings of the 17th ACM International Symposium on Wearable Computers, 2013 , pp. 69-76
    • Xu, Y.1
  • 41
    • 42549108326 scopus 로고    scopus 로고
    • The mobile sensing platform: An embedded activity recognition system
    • T. Choudhury, et al., The mobile sensing platform: an embedded activity recognition system, IEEE Trans. Pervasive Comput. 7 (2) (2008) 1268-1536.
    • (2008) IEEE Trans. Pervasive Comput. , vol.7 , Issue.2 , pp. 1268-1536
    • Choudhury, T.1
  • 42
    • 42549171956 scopus 로고    scopus 로고
    • Location and Activity Recognition Using eWatch: A Wearable Sensor Platform
    • U. Maurer, et al., Location and Activity Recognition Using eWatch: A Wearable Sensor Platform, in: Lecture Notes in Computer Science, vol. 3864, 2006, pp. 86-102.
    • (2006) Lecture Notes in Computer Science , vol.3864 , pp. 86-102
    • Maurer, U.1
  • 43
    • 78149339400 scopus 로고    scopus 로고
    • Knowledge Based Activity Recognition with Dynamic Bayesian Network
    • Z. Zeng, Q. Ji, Knowledge Based Activity Recognition with Dynamic Bayesian Network, in: Lecture Notes in Computer Science, vol. 6316, 2010, pp. 532-546.
    • (2010) Lecture Notes in Computer Science , vol.6316 , pp. 532-546
    • Zeng, Z.1    Ji, Q.2
  • 44
    • 84912150450 scopus 로고    scopus 로고
    • HMM classifier for human activity recognition
    • MS. Kanchan Gaikwad, HMM classifier for human activity recognition, Internat. J. Comput. Sci. Eng. 2 (4) (2012) 27-36.
    • (2012) Internat. J. Comput. Sci. Eng. , vol.2 , Issue.4 , pp. 27-36
    • Kanchan Gaikwad, M.S.1
  • 45
    • 26944464568 scopus 로고    scopus 로고
    • A Comparison of HMMs and Dynamic Bayesian Networks for Recognizing Office Activities
    • N. Oliver, E. Horvitz, A Comparison of HMMs and Dynamic Bayesian Networks for Recognizing Office Activities, in: Lecture Notes in Computer Science, vol. 3538, 2005, pp. 199-209.
    • (2005) Lecture Notes in Computer Science , vol.3538 , pp. 199-209
    • Oliver, N.1    Horvitz, E.2
  • 49
    • 77956374326 scopus 로고    scopus 로고
    • Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree
    • J. Pärkkä, et al., Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree, IEEE Trans. Inform. Technol. Biomed. 14 (5) (2010) 1211-1215.
    • (2010) IEEE Trans. Inform. Technol. Biomed. , vol.14 , Issue.5 , pp. 1211-1215
    • Pärkkä, J.1
  • 51
    • 79960146276 scopus 로고    scopus 로고
    • Human action recognition based on non-linear SVM decision tree
    • H.Y. Zhao, Z.J. Liu, Human action recognition based on non-linear SVM decision tree, J. Comput. Inform. Syst. 7 (7) (2011) 2461-2468.
    • (2011) J. Comput. Inform. Syst. , vol.7 , Issue.7 , pp. 2461-2468
    • Zhao, H.Y.1    Liu, Z.J.2
  • 52
    • 84870866072 scopus 로고    scopus 로고
    • Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine
    • D. Anguita, et al., Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine, in: Lecture Notes in Computer Science, vol. 7657, 2012, pp. 216-223.
    • (2012) Lecture Notes in Computer Science , vol.7657 , pp. 216-223
    • Anguita, D.1
  • 53
    • 71549159433 scopus 로고    scopus 로고
    • Recognition of human activities using SVM multi-class classifier
    • H.M. Qian, et al., Recognition of human activities using SVM multi-class classifier, Pattern Recognit. Lett. 31 (2010) 100-111.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 100-111
    • Qian, H.M.1
  • 55
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, V.N. Vapnik, Support vector networks, Mach. Learn. 20 (3) (1995) 273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 57
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett. 9 (3) (1999) 293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 59
    • 84888364466 scopus 로고    scopus 로고
    • Large margin DAG's for multiclass classification
    • J.C. Plat, et al., Large margin DAG's for multiclass classification, Adv. Neural Inf. Process. Syst. (2000) 547-553.
    • (2000) Adv. Neural Inf. Process. Syst. , pp. 547-553
    • Plat, J.C.1
  • 60
    • 0001849156 scopus 로고    scopus 로고
    • Multicategory classification by support vector machines
    • E.J. Bredensteiner, K.P. Bennett, Multicategory classification by support vector machines, Comput. Optim. Appl. 12 (1-3) (1999) 53-79.
    • (1999) Comput. Optim. Appl. , vol.12 , Issue.1-3 , pp. 53-79
    • Bredensteiner, E.J.1    Bennett, K.P.2
  • 61
    • 0036088194 scopus 로고    scopus 로고
    • Combining discriminant models with new multiclass SVMs
    • Y. Guermeur, Combining discriminant models with new multiclass SVMs, Pattern Anal. Appl. 5 (2) (2002) 168-179.
    • (2002) Pattern Anal. Appl. , vol.5 , Issue.2 , pp. 168-179
    • Guermeur, Y.1
  • 62
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.W. Hsu, C.J. Lin, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw. 13 (2) (2002) 415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 64
    • 0036470106 scopus 로고    scopus 로고
    • Multiclass LS- SVMs: Moderated outputs and coding-decoding schemes
    • T.V. Gestel, et al., Multiclass LS- SVMs: moderated outputs and coding-decoding schemes, Neural Process. Lett. 15 (1) (2002) 45-58.
    • (2002) Neural Process. Lett. , vol.15 , Issue.1 , pp. 45-58
    • Gestel, T.V.1
  • 66
    • 21244486307 scopus 로고    scopus 로고
    • Multicategory proximal support vector machine classifiers
    • G.M. Fung, O.L Mangasarian, Multicategory proximal support vector machine classifiers, Mach. Learn. 59 (1-2) (2005) 77-97.
    • (2005) Mach. Learn. , vol.59 , Issue.1-2 , pp. 77-97
    • Fung, G.M.1    Mangasarian, O.L.2
  • 67
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, et al., Extreme learning machine: theory and applications, Neurocomputing 7 (1-3) (2006) 489-501.
    • (2006) Neurocomputing , vol.7 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1
  • 69
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.B. Huang, et al., Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Netw. 17 (4) (2006) 879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1
  • 70
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • G.B. Huang, et al., Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst. Man Cybern. 42 (2) (2012) 513-529.
    • (2012) IEEE Trans. Syst. Man Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1
  • 72
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • M. Hall, et al., The WEKA data mining software: an update, ACM SIGKDD Explor. 11 (1) (2009) 10-18.
    • (2009) ACM SIGKDD Explor. , vol.11 , Issue.1 , pp. 10-18
    • Hall, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.