메뉴 건너뛰기




Volumn , Issue , 2012, Pages 250-259

Detecting leisure activities with dense motif discovery

Author keywords

Activity detection; Motif discovery; Psychiatric monitoring

Indexed keywords

ACTIVITY DETECTION; ACTIVITY INFERENCE; CONTINUOUS DATA; CONVENTIONAL APPROACH; DATA ABSTRACTION; DATA LOGGER; DATA-MINING TOOLS; EXECUTION SPEED; FEASIBILITY STUDIES; LARGE DATA; LEISURE ACTIVITIES; MOOD DISORDERS; MOTIF DISCOVERY; PRECISION AND RECALL; TARGET ACTIVITY;

EID: 84867477228     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2370216.2370257     Document Type: Conference Paper
Times cited : (67)

References (29)
  • 1
    • 33845324866 scopus 로고    scopus 로고
    • Detection of eating and drinking arm gestures using inertial body-worn sensors
    • IEEE
    • O. Amft, H. Junker, and G. Tröster. Detection of eating and drinking arm gestures using inertial body-worn sensors. In ISWC '05, pages 160-163. IEEE, 2005.
    • (2005) ISWC '05 , pp. 160-163
    • Amft, O.1    Junker, H.2    Tröster, G.3
  • 2
    • 0018462114 scopus 로고
    • The bech-rafaelsen mania scale and the hamilton depression scale
    • P. Bech, T. Bolwig, P. Kramp, and O. Rafaelsen. The bech-rafaelsen mania scale and the hamilton depression scale. Acta Psych. Scand., 59(4):420-430, 1979.
    • (1979) Acta Psych. Scand. , vol.59 , Issue.4 , pp. 420-430
    • Bech, P.1    Bolwig, T.2    Kramp, P.3    Rafaelsen, O.4
  • 3
    • 38149108269 scopus 로고    scopus 로고
    • Tracking free-weight exercises
    • Berlin, Heidelberg, Springer
    • K.-H. Chang, M. Chen, and J. Canny. Tracking free-weight exercises. In UbiComp '07, pages 19-37, Berlin, Heidelberg, 2007. Springer.
    • (2007) UbiComp '07 , pp. 19-37
    • Chang, K.-H.1    Chen, M.2    Canny, J.3
  • 4
    • 52649179212 scopus 로고    scopus 로고
    • Probabilistic discovery of time series motifs
    • New York, NY, USA, ACM
    • B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In KDD '03, pages 493-498, New York, NY, USA, 2003. ACM.
    • (2003) KDD '03 , pp. 493-498
    • Chiu, B.1    Keogh, E.2    Lonardi, S.3
  • 6
    • 0035341277 scopus 로고    scopus 로고
    • Actigraphy and parental ratings of sleep in children with adhd
    • P. Corkum, R. Tannock, H. Moldofsky, S. Hogg-Johnson, and T. Humphries. Actigraphy and parental ratings of sleep in children with adhd. Sleep, 24(3):303, 2001.
    • (2001) Sleep , vol.24 , Issue.3 , pp. 303
    • Corkum, P.1    Tannock, R.2    Moldofsky, H.3    Hogg-Johnson, S.4    Humphries, T.5
  • 7
    • 50649089570 scopus 로고    scopus 로고
    • Structure from statistics - unsupervised activity analysis using suffix trees
    • IEEE
    • R. Hamid, S. Maddi, A. Bobick, and M. Essa. Structure from statistics - unsupervised activity analysis using suffix trees. In ICCV '07., pages 1-8. IEEE, 2007.
    • (2007) ICCV '07 , pp. 1-8
    • Hamid, R.1    Maddi, S.2    Bobick, A.3    Essa, M.4
  • 8
    • 78651410578 scopus 로고    scopus 로고
    • Recognizing turns and other snowboarding activities with a gyroscope
    • T. Holleczek, J. Schoch, B. Arnrich, and G. Tröster. Recognizing turns and other snowboarding activities with a gyroscope. In ISWC '10, pages 75-82, 2010.
    • (2010) ISWC '10 , pp. 75-82
    • Holleczek, T.1    Schoch, J.2    Arnrich, B.3    Tröster, G.4
  • 9
    • 38149092026 scopus 로고    scopus 로고
    • Analyzing features for activity recognition
    • New York, NY, USA, ACM
    • T. Huynh and B. Schiele. Analyzing features for activity recognition. In sOc-EUSAI '05, pages 159-163, New York, NY, USA, 2005. ACM.
    • (2005) SOc-EUSAI '05 , pp. 159-163
    • Huynh, T.1    Schiele, B.2
  • 11
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • IEEE
    • E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for segmenting time series. In ICDM '01, pages 289-296. IEEE, 2001.
    • (2001) ICDM '01 , pp. 289-296
    • Keogh, E.J.1    Chu, S.2    Hart, D.3    Pazzani, M.J.4
  • 12
    • 77950786726 scopus 로고    scopus 로고
    • Enabling efficient time series analysis for wearable activity data
    • IEEE
    • K. V. Laerhoven, E. Berlin, and B. Schiele. Enabling efficient time series analysis for wearable activity data. In ICMLA '09, pages 392-397. IEEE, 2009.
    • (2009) ICMLA '09 , pp. 392-397
    • Laerhoven, K.V.1    Berlin, E.2    Schiele, B.3
  • 13
    • 84880762436 scopus 로고    scopus 로고
    • A hybrid discriminative/generative approach for modeling human activities
    • Morgan Kaufmann Publishers
    • J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discriminative/generative approach for modeling human activities. In IJCAI '05, pages 766-772. Morgan Kaufmann Publishers, 2005.
    • (2005) IJCAI '05 , pp. 766-772
    • Lester, J.1    Choudhury, T.2    Kern, N.3    Borriello, G.4    Hannaford, B.5
  • 14
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In DMKD '03, pages 2-11, 2003.
    • (2003) DMKD '03 , pp. 2-11
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 15
    • 85054673111 scopus 로고    scopus 로고
    • Fast and scalable training of semi-supervised CRFs with application to activity recognition
    • December
    • M. Mahdaviani and T. Choudhury. Fast and scalable training of semi-supervised CRFs with application to activity recognition. In NIPS, December 2007.
    • (2007) NIPS
    • Mahdaviani, M.1    Choudhury, T.2
  • 16
    • 43949136939 scopus 로고    scopus 로고
    • Discovering characteristic actions from on-body sensor data
    • IEEE
    • D. Minnen, T. Starner, I. A. Essa, and C. L. I. Jr. Discovering characteristic actions from on-body sensor data. In ISWC '06, pages 11-18. IEEE, 2006.
    • (2006) ISWC '06 , pp. 11-18
    • Minnen, D.1    Starner, T.2    Essa, I.A.3    Jr., C.L.I.4
  • 17
    • 26944464568 scopus 로고    scopus 로고
    • A comparison of HMMs and dynamic bayesian networks for recognizing office activities
    • N. Oliver and E. Horvitz. A comparison of HMMs and dynamic bayesian networks for recognizing office activities. In UM 2005, volume 3538, page 199, 2005.
    • (2005) UM 2005 , vol.3538 , pp. 199
    • Oliver, N.1    Horvitz, E.2
  • 19
    • 33845303529 scopus 로고    scopus 로고
    • Fine-grained activity recognition by aggregating abstract object usage
    • D. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract object usage. In ISWC, pages 44-51, 2005.
    • (2005) ISWC , pp. 44-51
    • Patterson, D.1    Fox, D.2    Kautz, H.3    Philipose, M.4
  • 22
    • 41149153015 scopus 로고    scopus 로고
    • Fusion of string-matched templates for continuous activity recognition
    • IEEE
    • T. Stiefmeier, D. Roggen, and G. Troster. Fusion of string-matched templates for continuous activity recognition. In ISWC '07, pages 41-44. IEEE, 2007.
    • (2007) ISWC '07 , pp. 41-44
    • Stiefmeier, T.1    Roggen, D.2    Troster, G.3
  • 23
    • 59449083341 scopus 로고    scopus 로고
    • On the feasibility of using activity recognition and context aware interaction to support early diagnosis of bipolar disorder
    • D. Tacconi, O. Mayora, P. Lukowicz, B. Arnrich, G. Tröster, and C. Haring. On the feasibility of using activity recognition and context aware interaction to support early diagnosis of bipolar disorder. In Ubiwell Workshop 2007, pages 206-209, 2007.
    • (2007) Ubiwell Workshop 2007 , pp. 206-209
    • Tacconi, D.1    Mayora, O.2    Lukowicz, P.3    Arnrich, B.4    Tröster, G.5    Haring, C.6
  • 24
    • 0029017179 scopus 로고
    • Actigraphy and motion analysis: New tools for psychiatry
    • M. H. Teicher. Actigraphy and motion analysis: New tools for psychiatry. Harvard Review of Psychiatry, 3(1):18-35, 1995.
    • (1995) Harvard Review of Psychiatry , vol.3 , Issue.1 , pp. 18-35
    • Teicher, M.H.1
  • 26
    • 78751680120 scopus 로고    scopus 로고
    • Toward unsupervised activity discovery using multi-dimensional motif detection in time series
    • Morgan Kaufmann Publishers Inc.
    • A. Vahdatpour, N. Amini, and M. Sarrafzadeh. Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In IJCAI '09, pages 1261-1266. Morgan Kaufmann Publishers Inc., 2009.
    • (2009) IJCAI '09 , pp. 1261-1266
    • Vahdatpour, A.1    Amini, N.2    Sarrafzadeh, M.3
  • 27
    • 33750822191 scopus 로고    scopus 로고
    • Long term activity monitoring with a wearable sensor node
    • IEEE
    • K. Van Laerhoven, H. Gellersen, and Y. Malliaris. Long term activity monitoring with a wearable sensor node. In BSN 2006, pages 171-174. IEEE, 2006.
    • (2006) BSN 2006 , pp. 171-174
    • Van Laerhoven, K.1    Gellersen, H.2    Malliaris, Y.3
  • 28
    • 33144483696 scopus 로고    scopus 로고
    • Continuous electronic data capture of physiology, behavior and experience in real life
    • March
    • F. H. Wilhelm, M. C. Pfaltz, and P. Grossman. Continuous electronic data capture of physiology, behavior and experience in real life. Interacting with Computers, 18:171-186, March 2006.
    • (2006) Interacting with Computers , vol.18 , pp. 171-186
    • Wilhelm, F.H.1    Pfaltz, M.C.2    Grossman, P.3
  • 29
    • 70450164036 scopus 로고    scopus 로고
    • An analysis of sensor-oriented vs. Model-based activity recognition
    • IEEE
    • A. Zinnen, U. Blanke, and B. Schiele. An analysis of sensor-oriented vs. model-based activity recognition. In ISWC '09, pages 93-100. IEEE, 2009.
    • (2009) ISWC '09 , pp. 93-100
    • Zinnen, A.1    Blanke, U.2    Schiele, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.