-
1
-
-
84877687210
-
Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy
-
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 2013;153:828.
-
(2013)
Cell
, vol.153
, pp. 828
-
-
Loffredo, F.S.1
Steinhauser, M.L.2
Jay, S.M.3
-
2
-
-
79751513700
-
Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7novelty and significance
-
Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7novelty and significance. Circ Res 2011;108:305.
-
(2011)
Circ Res
, vol.108
, pp. 305
-
-
Yang, Y.1
Ago, T.2
Zhai, P.3
Abdellatif, M.4
Sadoshima, J.5
-
4
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008;456:980.
-
(2008)
Nature
, vol.456
, pp. 980
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
-
5
-
-
79751513700
-
Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7
-
Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 2011;108:305.
-
(2011)
Circ Res
, vol.108
, pp. 305
-
-
Yang, Y.1
Ago, T.2
Zhai, P.3
Abdellatif, M.4
Sadoshima, J.5
-
6
-
-
77954895288
-
Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy
-
Li Q, Song X-W, Zou J, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 2010;123:2444.
-
(2010)
J Cell Sci
, vol.123
, pp. 2444
-
-
Li, Q.1
Song, X.-W.2
Zou, J.3
-
7
-
-
84862777974
-
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
-
Delgado-Olguín P, Huang Y, Li X, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 2012;44:343.
-
(2012)
Nat Genet
, vol.44
, pp. 343
-
-
Delgado-Olguín, P.1
Huang, Y.2
Li, X.3
-
8
-
-
79955605389
-
MicroRNAs and cardiovascular diseases
-
Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J 2011;278:1619.
-
(2011)
FEBS J
, vol.278
, pp. 1619
-
-
Ono, K.1
Kuwabara, Y.2
Han, J.3
-
11
-
-
77950647746
-
The roles of microRNAs in heart diseases: A novel important regulator
-
Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem 2010;17:407.
-
(2010)
Curr Med Chem
, vol.17
, pp. 407
-
-
Cai, B.1
Pan, Z.2
Lu, Y.3
-
12
-
-
55249125659
-
Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling
-
da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008;118:1567.
-
(2008)
Circulation
, vol.118
, pp. 1567
-
-
Da Costa Martins, P.A.1
Bourajjaj, M.2
Gladka, M.3
-
13
-
-
77951498855
-
Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading
-
Divakaran V, Adrogue J, Ishiyama M, et al. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail 2009;2:633.
-
(2009)
Circ Heart Fail
, vol.2
, pp. 633
-
-
Divakaran, V.1
Adrogue, J.2
Ishiyama, M.3
-
14
-
-
79960413821
-
Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection
-
Li S, Zhu J, Zhang W, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011;124:175.
-
(2011)
Circulation
, vol.124
, pp. 175
-
-
Li, S.1
Zhu, J.2
Zhang, W.3
-
15
-
-
84862102572
-
Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure
-
Reddy S, Zhao M, Hu DQ, et al. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 2012;44:562.
-
(2012)
Physiol Genomics
, vol.44
, pp. 562
-
-
Reddy, S.1
Zhao, M.2
Hu, D.Q.3
-
16
-
-
84861993799
-
Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy
-
Yang KC, Ku YC, Lovett M, Nerbonne JM. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy. J Mol Cell Cardiol 2012;53:101.
-
(2012)
J Mol Cell Cardiol
, vol.53
, pp. 101
-
-
Yang, K.C.1
Ku, Y.C.2
Lovett, M.3
Nerbonne, J.M.4
-
17
-
-
34249729491
-
Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy
-
Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007;42:1137.
-
(2007)
J Mol Cell Cardiol
, vol.42
, pp. 1137
-
-
Tatsuguchi, M.1
Seok, H.Y.2
Callis, T.E.3
-
18
-
-
41149147013
-
Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure
-
Chen J-F, Murchison EP, Tang R, et al. Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008;105:2111.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 2111
-
-
Chen, J.-F.1
Murchison, E.P.2
Tang, R.3
-
19
-
-
70349254444
-
Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
-
Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009;105:585.
-
(2009)
Circ Res
, vol.105
, pp. 585
-
-
Rao, P.K.1
Toyama, Y.2
Chiang, H.R.3
-
20
-
-
34447318648
-
MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy?
-
Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 2007;170:1831.
-
(2007)
Am J Pathol
, vol.170
, pp. 1831
-
-
Cheng, Y.1
Ji, R.2
Yue, J.3
-
21
-
-
33847038668
-
MicroRNAs play an essential role in the development of cardiac hypertrophy
-
Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007;100:416.
-
(2007)
Circ Res
, vol.100
, pp. 416
-
-
Sayed, D.1
Hong, C.2
Chen, I.Y.3
Lypowy, J.4
Abdellatif, M.5
-
22
-
-
56149091721
-
MicroRNA: Novel regulators involved in the remodeling and reverse remodeling of the heart
-
Wang J, Xu R, Lin F, et al. MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 2009;113:81.
-
(2009)
Cardiology
, vol.113
, pp. 81
-
-
Wang, J.1
Xu, R.2
Lin, F.3
-
23
-
-
84880045471
-
MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2
-
Yang T, Zhang GF, Chen XF, et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem Biophys Res Commun 2013;436:578.
-
(2013)
Biochem Biophys Res Commun
, vol.436
, pp. 578
-
-
Yang, T.1
Zhang, G.F.2
Chen, X.F.3
-
24
-
-
71549165765
-
A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance
-
van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662.
-
(2009)
Dev Cell
, vol.17
, pp. 662
-
-
Van Rooij, E.1
Quiat, D.2
Johnson, B.A.3
-
25
-
-
77954385461
-
MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease
-
Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 2010;42:1252.
-
(2010)
Int J Biochem Cell Biol
, vol.42
, pp. 1252
-
-
Townley-Tilson, W.H.1
Callis, T.E.2
Wang, D.3
-
26
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006;103:18255.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 18255
-
-
Van Rooij, E.1
Sutherland, L.B.2
Liu, N.3
-
27
-
-
84859720170
-
MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death
-
Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 2012;122:1222.
-
(2012)
J Clin Invest
, vol.122
, pp. 1222
-
-
Aurora, A.B.1
Mahmoud, A.I.2
Luo, X.3
-
28
-
-
84887959292
-
MicroRNA-214 protects cardiac myocytes against H2O2-induced injury
-
Lv G, Shao S, Dong H, Bian X, Yang X, Dong S. MicroRNA-214 protects cardiac myocytes against H2O2-induced injury. J Cell Biochem 2014;115:93.
-
(2014)
J Cell Biochem
, vol.115
, pp. 93
-
-
Lv, G.1
Shao, S.2
Dong, H.3
Bian, X.4
Yang, X.5
Dong, S.6
-
29
-
-
70349764482
-
Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells
-
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009;36:61.
-
(2009)
Mol Cell
, vol.36
, pp. 61
-
-
Juan, A.H.1
Kumar, R.M.2
Marx, J.G.3
Young, R.A.4
Sartorelli, V.5
-
30
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007;316:575.
-
(2007)
Science
, vol.316
, pp. 575
-
-
Van Rooij, E.1
Sutherland, L.B.2
Qi, X.3
Richardson, J.A.4
Hill, J.5
Olson, E.N.6
-
32
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007;13:613.
-
(2007)
Nat Med
, vol.13
, pp. 613
-
-
Care, A.1
Catalucci, D.2
Felicetti, F.3
-
33
-
-
70349309314
-
MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes
-
Horie T, Ono K, Nishi H, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 2009;389:315.
-
(2009)
Biochem Biophys Res Commun
, vol.389
, pp. 315
-
-
Horie, T.1
Ono, K.2
Nishi, H.3
-
34
-
-
75449100509
-
miR133a regulates cardiomyocyte hypertrophy in diabetes
-
Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010;26:40.
-
(2010)
Diabetes Metab Res Rev
, vol.26
, pp. 40
-
-
Feng, B.1
Chen, S.2
George, B.3
Feng, Q.4
Chakrabarti, S.5
-
35
-
-
67749106564
-
miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy
-
Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A 2009;106:12103.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 12103
-
-
Lin, Z.1
Murtaza, I.2
Wang, K.3
Jiao, J.4
Gao, J.5
Li, P.F.6
-
36
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling
-
Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009;104:170. 176p following 178.
-
(2009)
Circ Res
, vol.104
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
-
37
-
-
44449141843
-
RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse
-
Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 2008;14:962.
-
(2008)
Dev Cell
, vol.14
, pp. 962
-
-
Wagner, K.D.1
Wagner, N.2
Ghanbarian, H.3
|