메뉴 건너뛰기




Volumn 51, Issue , 2015, Pages 29-40

A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation

Author keywords

Fuzzy C means; Genetic algorithm; Imputation; Missing sensor data; Traffic volume

Indexed keywords

FUZZY SYSTEMS; MEAN SQUARE ERROR; MEMBERSHIP FUNCTIONS; STATISTICAL TESTS;

EID: 84912055274     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.11.003     Document Type: Article
Times cited : (195)

References (29)
  • 2
    • 0022563515 scopus 로고
    • A computer program for time series forecasting using single and double exponential smoothing techniques
    • Baharaeen S., Masud A.S. A computer program for time series forecasting using single and double exponential smoothing techniques. Comput. Ind. Eng. 1986, 11:151-155.
    • (1986) Comput. Ind. Eng. , vol.11 , pp. 151-155
    • Baharaeen, S.1    Masud, A.S.2
  • 5
    • 0041611508 scopus 로고    scopus 로고
    • Nearest neighbor imputation for survey data
    • Chen J., Shao J. Nearest neighbor imputation for survey data. J. Official Stat. 2000, 16(2):113-131.
    • (2000) J. Official Stat. , vol.16 , Issue.2 , pp. 113-131
    • Chen, J.1    Shao, J.2
  • 8
    • 79951578021 scopus 로고    scopus 로고
    • Missing data analysis with fuzzy C-means: a study of its application in a psychological scenario
    • Di Nuovo A.G. Missing data analysis with fuzzy C-means: a study of its application in a psychological scenario. Expert Syst. Appl. 2011, 38(6):6793-6797.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.6 , pp. 6793-6797
    • Di Nuovo, A.G.1
  • 11
    • 0036132613 scopus 로고    scopus 로고
    • Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm
    • Hathaway R.J., Bezdek J.C. Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. Pattern Recogn. Lett. 2002, 23:151-160.
    • (2002) Pattern Recogn. Lett. , vol.23 , pp. 151-160
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 13
    • 0742324096 scopus 로고    scopus 로고
    • Forecasting seasonals and trends by exponentially weighted moving averages
    • Holt C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20:5-10.
    • (2004) Int. J. Forecast. , vol.20 , pp. 5-10
    • Holt, C.C.1
  • 14
    • 9444246450 scopus 로고    scopus 로고
    • Towards missing data imputation: a study of fuzzy K-means clustering method
    • Li D., Deogun J., Spaulding W., Shuart B. Towards missing data imputation: a study of fuzzy K-means clustering method. Rough Sets Curr. Trends Comput. 2004, 3066:573-579.
    • (2004) Rough Sets Curr. Trends Comput. , vol.3066 , pp. 573-579
    • Li, D.1    Deogun, J.2    Spaulding, W.3    Shuart, B.4
  • 15
    • 78649930585 scopus 로고    scopus 로고
    • A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data
    • Li D., Gu H., Zhang L.Y. A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Syst. Appl. 2010, 37(10):6942-6947.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.10 , pp. 6942-6947
    • Li, D.1    Gu, H.2    Zhang, L.Y.3
  • 16
    • 84880340417 scopus 로고    scopus 로고
    • Efficient missing data imputing for traffic flow by considering temporal and spatial dependence
    • Li L., Li Y., Li Z. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transport. Res. Part C 2013, 34:108-120.
    • (2013) Transport. Res. Part C , vol.34 , pp. 108-120
    • Li, L.1    Li, Y.2    Li, Z.3
  • 18
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11(2):431-441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.1
  • 20
    • 33847144343 scopus 로고    scopus 로고
    • Imputation techniques to account for missing data in support of intelligent transportation systems applications
    • Technical Report UVACTS-13-0-78, University of Virginia, Center for Transportation Studies
    • Nguyen, L.H., Scherer, W.T., 2003. Imputation techniques to account for missing data in support of intelligent transportation systems applications. Technical Report UVACTS-13-0-78, University of Virginia, Center for Transportation Studies.
    • (2003)
    • Nguyen, L.H.1    Scherer, W.T.2
  • 21
    • 28944453700 scopus 로고    scopus 로고
    • Multiple imputation scheme for overcoming the missing values and variability issues in ITS data
    • Ni D., Leonard J.D., Guin A., Feng C. Multiple imputation scheme for overcoming the missing values and variability issues in ITS data. J. Transport. Eng. 2005, 131:931-938.
    • (2005) J. Transport. Eng. , vol.131 , pp. 931-938
    • Ni, D.1    Leonard, J.D.2    Guin, A.3    Feng, C.4
  • 22
    • 10944259946 scopus 로고    scopus 로고
    • New algorithms for filtering and imputation of real-time and archived dual-loop detector data in I-4 data warehouse
    • Al Deek H.M., Chandra C.V.S.R. New algorithms for filtering and imputation of real-time and archived dual-loop detector data in I-4 data warehouse. Transport. Res. Rec. J. Transport. Res. Board 2004, 1867:116-126.
    • (2004) Transport. Res. Rec. J. Transport. Res. Board , vol.1867 , pp. 116-126
    • Al Deek, H.M.1    Chandra, C.V.S.R.2
  • 23
    • 84976615807 scopus 로고
    • Intelligent transportation: serving the user through deployment
    • March, Washington, DC, America
    • Patel, R., 1995. Intelligent transportation: serving the user through deployment. In: Proceedings of the Annual Meeting of ITS America, March, Washington, DC, America, pp. 15-17.
    • (1995) Proceedings of the Annual Meeting of ITS America , pp. 15-17
    • Patel, R.1
  • 24
    • 70349166727 scopus 로고    scopus 로고
    • PPCA-based missing data imputation for traffic flow volume: a systematical approach
    • Qu L., Li L., Zhang Y., Hu J. PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Trans. Intell. Transport. Syst. 2009, 10(3):512-522.
    • (2009) IEEE Trans. Intell. Transport. Syst. , vol.10 , Issue.3 , pp. 512-522
    • Qu, L.1    Li, L.2    Zhang, Y.3    Hu, J.4
  • 25
    • 0028407137 scopus 로고
    • AutoCounts: a way to analyse automatic traffic count data
    • Ramsey B., Hayden G. AutoCounts: a way to analyse automatic traffic count data. Traffic Eng. Control 1994, 35(4):245.
    • (1994) Traffic Eng. Control , vol.35 , Issue.4 , pp. 245
    • Ramsey, B.1    Hayden, G.2
  • 27
    • 1142291805 scopus 로고    scopus 로고
    • Different approaches to fuzzy clustering of incomplete datasets
    • Timm H., Doring C., Kruse R. Different approaches to fuzzy clustering of incomplete datasets. Int. J. Approximate Reasoning 2004, 35(3):239-249.
    • (2004) Int. J. Approximate Reasoning , vol.35 , Issue.3 , pp. 239-249
    • Timm, H.1    Doring, C.2    Kruse, R.3
  • 28
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
    • Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transport. Eng. 2003, 129(6):664-672.
    • (2003) J. Transport. Eng. , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 29
    • 4544254645 scopus 로고    scopus 로고
    • Estimation of missing traffic counts using factor, genetic, neural, and regression techniques
    • Zhong M., Lingras P., Sharma S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques. Transport. Res. Part C 2004, 12:139-166.
    • (2004) Transport. Res. Part C , vol.12 , pp. 139-166
    • Zhong, M.1    Lingras, P.2    Sharma, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.