메뉴 건너뛰기




Volumn 334, Issue , 2015, Pages 371-381

Stock market forecasting using LASSO linear regression model

Author keywords

LASSO regression; Stock price prediction

Indexed keywords

COMMERCE; FINANCE; FINANCIAL DATA PROCESSING; FORECASTING; INFORMATION DISSEMINATION; MATHEMATICAL MODELS;

EID: 84912051370     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-13572-4_31     Document Type: Article
Times cited : (73)

References (11)
  • 2
    • 33847236231 scopus 로고    scopus 로고
    • Machine learning techniques and use of event information for stock market prediction: A survey and evaluation
    • Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
    • Yoo, P.D., Kim, M.H., Jan, T.: Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. In: International Conference on Computational Intelligence for Modeling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 2, pp. 835–841 (2005)
    • (2005) International Conference on Computational Intelligence for Modeling , vol.2 , pp. 835-841
    • Yoo, P.D.1    Kim, M.H.2    Jan, T.3
  • 6
    • 84877852473 scopus 로고    scopus 로고
    • A Bayesian regularized artificial neural network for stock market forecasting
    • Ticknor, J.L.: A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications 40(14), 5501–5506 (2013)
    • (2013) Expert Systems with Applications , vol.40 , Issue.14 , pp. 5501-5506
    • Ticknor, J.L.1
  • 8
    • 33646756558 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization approach for evolving ensemble of intelligent paradigms for stock market modeling
    • In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.), LNCS (LNAI), Springer, Heidelberg
    • Abraham, A., Grosan, C., Han, S.Y., Gelbukh, A.: Evolutionary multiobjective optimization approach for evolving ensemble of intelligent paradigms for stock market modeling. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 673–681. Springer, Heidelberg (2005)
    • (2005) MICAI 2005 , vol.3789 , pp. 673-681
    • Abraham, A.1    Grosan, C.2    Han, S.Y.3    Gelbukh, A.4
  • 9
    • 33845997779 scopus 로고    scopus 로고
    • Flexible neural trees ensemble for stock index modeling
    • Chen, Y., Yang, B., Abraham, A.: Flexible neural trees ensemble for stock index modeling. Neurocomputing 70(4), 697–703 (2007)
    • (2007) Neurocomputing , vol.70 , Issue.4 , pp. 697-703
    • Chen, Y.1    Yang, B.2    Abraham, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.