메뉴 건너뛰기




Volumn 7, Issue 11, 2014, Pages 7041-7066

An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm

Author keywords

Appliance identification; Current harmonics; Load monitoring; Transient signal

Indexed keywords

AGGREGATES; ELECTRIC LOAD MANAGEMENT; ELECTRIC VARIABLES MEASUREMENT; ENERGY UTILIZATION; POWER QUALITY;

EID: 84912006362     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en7117041     Document Type: Article
Times cited : (43)

References (36)
  • 1
    • 85029862896 scopus 로고    scopus 로고
    • (accessed on 12 December)
    • European Environmental Agency. Final Energy Consumption by Sector in the EU-27, 1990-2006. Available online: http://www.eea.europa.eu/data-and-maps/figures/final-energy-consumption-by-sector-in-the-eu-27-1990-2006 (accessed on 12 December 2012).
    • (2012)
  • 2
    • 85029847608 scopus 로고    scopus 로고
    • (accessed on 28 October)
    • U.S Energy Information Administration. Today in Energy: Heating and Cooling No Longer Majority of U.S. Home Energy Use. Available online: http://www.eia.gov/todayinenergy/ detail.cfm?id=10271 (accessed on 28 October 2014).
    • (2014)
  • 5
    • 4644241838 scopus 로고    scopus 로고
    • Activity recognition in the home using simple and ubiquitous sensors
    • Springer: Berlin, Germany
    • Tapia, E.M.; Intille, S.S; Larson, K. Activity recognition in the home using simple and ubiquitous sensors. In Pervasive Computing; Springer: Berlin, Germany, 2004.
    • (2004) Pervasive Computing
    • Tapia, E.M.1    Intille, S.S.2    Larson, K.3
  • 9
    • 84870733146 scopus 로고    scopus 로고
    • Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses
    • Chang, H.H. Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses. Energies 2012, 5, 4569-4589.
    • (2012) Energies , vol.5 , pp. 4569-4589
    • Chang, H.H.1
  • 10
    • 84859043194 scopus 로고    scopus 로고
    • A new measurement method for power signatures of nonintrusive demand monitoring and load identification
    • Chang, H.H.; Chen, K.L.; Tsai, Y.P.; Lee, W.J. A new measurement method for power signatures of nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 2012, 48, 764-771.
    • (2012) IEEE Trans. Ind. Appl. , vol.48 , pp. 764-771
    • Chang, H.H.1    Chen, K.L.2    Tsai, Y.P.3    Lee, W.J.4
  • 12
    • 58349119360 scopus 로고    scopus 로고
    • Load identification in neural networks for a non-intrusive monitoring of industrial electrical loads
    • Springer: Berlin, Germany
    • Chang, H.H.; Yang, H.T.; Lin, C.L. Load identification in neural networks for a non-intrusive monitoring of industrial electrical loads. In Computer Supported Cooperative Work in Design IV; Springer: Berlin, Germany, 2008; pp. 664-674.
    • (2008) Computer Supported Cooperative Work in Design IV , pp. 664-674
    • Chang, H.H.1    Yang, H.T.2    Lin, C.L.3
  • 13
    • 78650002846 scopus 로고    scopus 로고
    • ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home
    • ACM, Copenhagen, Denmark, 26-29 September
    • Gupta, S.; Reynolds, M.; Patel, S. ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In Proceedings of the International Conference on Ubiquitous Computing, ACM, Copenhagen, Denmark, 26-29 September 2010; pp. 139-148.
    • (2010) Proceedings of the International Conference on Ubiquitous Computing , pp. 139-148
    • Gupta, S.1    Reynolds, M.2    Patel, S.3
  • 15
    • 33244458425 scopus 로고    scopus 로고
    • Neural-network-based signature recognition for harmonic source identification
    • Srinivasan, D.; Ng, W.; Liew, A. Neural-network-based signature recognition for harmonic source identification. IEEE Trans. Power Deliv. 2006, 21, 398-405.
    • (2006) IEEE Trans. Power Deliv. , vol.21 , pp. 398-405
    • Srinivasan, D.1    Ng, W.2    Liew, A.3
  • 18
    • 84881090618 scopus 로고    scopus 로고
    • Low-power appliance monitoring using factorial Hidden Markov models
    • Sensor Networks and Information Processing, Melbourne, Australia, 2-5 April
    • Zoha, A.; Gluhak, A.; Nati, M.; Imran, M.A. Low-power appliance monitoring using factorial Hidden Markov models. In Proceedings of 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 2-5 April 2013; pp. 527-532.
    • (2013) Proceedings of 2013 IEEE Eighth International Conference on Intelligent Sensors , pp. 527-532
    • Zoha, A.1    Gluhak, A.2    Nati, M.3    Imran, M.A.4
  • 19
    • 77950187600 scopus 로고    scopus 로고
    • Load signature study-Part I: Basic concept, structure, and methodology
    • Liang, J.; Ng, S.; Kendall, G.; Cheng, J. Load signature study-Part I: Basic concept, structure, and methodology. IEEE Trans. Power Deliv. 2010, 25, 551-560.
    • (2010) IEEE Trans. Power Deliv. , vol.25 , pp. 551-560
    • Liang, J.1    Ng, S.2    Kendall, G.3    Cheng, J.4
  • 20
    • 77950189187 scopus 로고    scopus 로고
    • Load signature study-Part II: Disaggregation framework, simulation, and applications
    • Liang, J.; Ng, S.; Kendall, G.; Cheng, J. Load signature study-Part II: Disaggregation framework, simulation, and applications. IEEE Trans. Power Deliv. 2010, 25, 561-569.
    • (2010) IEEE Trans. Power Deliv. , vol.25 , pp. 561-569
    • Liang, J.1    Ng, S.2    Kendall, G.3    Cheng, J.4
  • 21
    • 79953198933 scopus 로고    scopus 로고
    • Nonintrusive appliance load monitoring: Review and outlook
    • Zeifman, M.; Roth, K. Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. Consum. Electron. 2011, 57, 76-84.
    • (2011) IEEE Trans. Consum. Electron. , vol.57 , pp. 76-84
    • Zeifman, M.1    Roth, K.2
  • 22
    • 84871704971 scopus 로고    scopus 로고
    • Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey
    • Zoha, A.; Gluhak, A.; Imran, M.A.; Rajasegarar, S. Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 2012, 12, 16838-16866.
    • (2012) Sensors , vol.12 , pp. 16838-16866
    • Zoha, A.1    Gluhak, A.2    Imran, M.A.3    Rajasegarar, S.4
  • 23
    • 0026970695 scopus 로고
    • Nonintrusive appliance load monitoring
    • Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870-1891.
    • (1992) Proc. IEEE , vol.80 , pp. 1870-1891
    • Hart, G.W.1
  • 25
    • 85029885246 scopus 로고    scopus 로고
    • (accessed on 28 October)
    • Department of Energy and Climate Change, United Kingdom. Household Electricity Survey. Available online: https://www.gov.uk/government/publications/household-electricity-survey (accessed on 28 October 2014).
    • (2014)
  • 26
    • 0026139604 scopus 로고
    • Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data
    • Powers, J.; Margossian, B.; Smith, B. Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data. IEEE Comput. Appl. Power 1991, 4, 42-47.
    • (1991) IEEE Comput. Appl. Power , vol.4 , pp. 42-47
    • Powers, J.1    Margossian, B.2    Smith, B.3
  • 27
    • 0027624749 scopus 로고
    • Comparison of standards and power supply design options for limiting harmonic distortion in power systems
    • Key, T.S.; Lai, J.S. Comparison of standards and power supply design options for limiting harmonic distortion in power systems. IEEE Trans. Ind. Appl. 1993, 29, 688-695.
    • (1993) IEEE Trans. Ind. Appl. , vol.29 , pp. 688-695
    • Key, T.S.1    Lai, J.S.2
  • 28
    • 79959338147 scopus 로고    scopus 로고
    • American Association for Artificial Intelligence (AAAI): Palo Alto, CA, USA
    • Zhang, H. The Optimality of Naive Bayes; American Association for Artificial Intelligence (AAAI): Palo Alto, CA, USA, 2004.
    • (2004) The Optimality of Naive Bayes
    • Zhang, H.1
  • 30
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple bayesian classifier
    • Bari, Italy, 3-6 July
    • Domingos, P.; Pazzani, M. Beyond independence: Conditions for the optimality of the simple bayesian classifier. In Proceedings of the 13th International Conference Machine Learning, Bari, Italy, 3-6 July 1996; pp. 105-112.
    • (1996) Proceedings of the 13th International Conference Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 33
    • 85029851162 scopus 로고    scopus 로고
    • (accessed on 15 October)
    • Allegro MicroSystems, LLC. ACS712: Fully Integrated, Hall-Effect-Based Linear Current Sensor IC with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor. Available online: http://www.allegromicro.com/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx (accessed on 15 October 2013).
    • (2013)
  • 34
    • 85029890096 scopus 로고    scopus 로고
    • (accessed on 16 October)
    • LabJack Corporation. UE9/UE9-Pro: Multifunction DAQ with Ethernet and USB. Available online: http://labjack.com/ue9 (accessed on 16 October 2013).
    • (2013)
  • 35
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.