-
1
-
-
0026849821
-
Definition of a consensus binding site for p53
-
El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1: 45-49.
-
(1992)
Nat Genet
, vol.1
, pp. 45-49
-
-
El-Deiry, W.S.1
Kern, S.E.2
Pietenpol, J.A.3
Kinzler, K.W.4
Vogelstein, B.5
-
2
-
-
0026650531
-
A transcriptionally active DNA-binding site for human p53 protein complexes
-
Funk WD, Pak DT, Karas RH, Wright WE, Shay JW (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12: 2866-2871.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 2866-2871
-
-
Funk, W.D.1
Pak, D.T.2
Karas, R.H.3
Wright, W.E.4
Shay, J.W.5
-
3
-
-
70349442548
-
The first 30 years of p53: Growing ever more complex
-
Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9: 749-758.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 749-758
-
-
Levine, A.J.1
Oren, M.2
-
6
-
-
34547620563
-
Divergent evolution of human p53 binding sites: Cell cycle versus apoptosis
-
Horvath MM, Wang X, Resnick MA, Bell DA (2007) Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLoS Genet 3: e127.
-
(2007)
PLoS Genet
, vol.3
, pp. e127
-
-
Horvath, M.M.1
Wang, X.2
Resnick, M.A.3
Bell, D.A.4
-
7
-
-
27644547419
-
Chromatin immunoprecipitationbased screen to identify functional genomic binding sites for sequence-specific transactivators
-
Hearnes JM, Mays DJ, Schavolt KL, Tang L, Jiang X, et al. (2005) Chromatin immunoprecipitationbased screen to identify functional genomic binding sites for sequence-specific transactivators. Mol Cell Biol 25: 10148-10158.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 10148-10158
-
-
Hearnes, J.M.1
Mays, D.J.2
Schavolt, K.L.3
Tang, L.4
Jiang, X.5
-
8
-
-
30344478870
-
A global map of p53 transcription-factor binding sites in the human genome
-
Wei C-L, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207-219.
-
(2006)
Cell
, vol.124
, pp. 207-219
-
-
Wei, C.-L.1
Wu, Q.2
Vega, V.B.3
Chiu, K.P.4
Ng, P.5
-
9
-
-
33749164424
-
Functional analysis of p53 binding under differential stresses
-
Krieg AJ, Hammond EM, Giaccia AJ (2006) Functional analysis of p53 binding under differential stresses. Mol Cell Biol 26: 7030-7045.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 7030-7045
-
-
Krieg, A.J.1
Hammond, E.M.2
Giaccia, A.J.3
-
10
-
-
33846010529
-
An integrated map of p53-binding sites and histone modification in the human ENCODE regions
-
Kaneshiro K, Tsutsumi S, Tsuji S, Shirahige K, Aburatani H (2007) An integrated map of p53-binding sites and histone modification in the human ENCODE regions. Genomics 89: 178-188.
-
(2007)
Genomics
, vol.89
, pp. 178-188
-
-
Kaneshiro, K.1
Tsutsumi, S.2
Tsuji, S.3
Shirahige, K.4
Aburatani, H.5
-
11
-
-
46349094389
-
Characterization of genome-wide p53-binding sites upon stress response
-
Smeenk L, van Heeringen SJ, Koeppel M, van Driel MA, Bartels SJ, et al. (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36: 3639-3654.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3639-3654
-
-
Smeenk, L.1
Van Heeringen, S.J.2
Koeppel, M.3
Van Driel, M.A.4
Bartels, S.J.5
-
12
-
-
79952349193
-
Role of p53 serine 46 in p53 target gene regulation
-
Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, et al. (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS One 6: e17574.
-
(2011)
PLoS One
, vol.6
, pp. e17574
-
-
Smeenk, L.1
Van Heeringen, S.J.2
Koeppel, M.3
Gilbert, B.4
Janssen-Megens, E.5
-
13
-
-
84885651314
-
A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection
-
Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, et al. (2013) A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155: 410-422.
-
(2013)
Cell
, vol.155
, pp. 410-422
-
-
Zeron-Medina, J.1
Wang, X.2
Repapi, E.3
Campbell, M.R.4
Su, D.5
-
14
-
-
84883474258
-
Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
-
Menendez D, Nguyen TA, Freudenberg JM, Mathew VJ, Anderson CW, et al. (2013) Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res 41: 7286-7301.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7286-7301
-
-
Menendez, D.1
Nguyen, T.A.2
Freudenberg, J.M.3
Mathew, V.J.4
Anderson, C.W.5
-
15
-
-
84869090231
-
Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis
-
Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, et al. (2012) Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 19: 1992-2002.
-
(2012)
Cell Death Differ
, vol.19
, pp. 1992-2002
-
-
Nikulenkov, F.1
Spinnler, C.2
Li, H.3
Tonelli, C.4
Shi, Y.5
-
16
-
-
84055190692
-
Distinct p53 genomic binding patterns in normal and cancer-derived human cells
-
Botcheva K, McCorkle SR, McCombie WR, Dunn JJ, Anderson CW (2011) Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 10: 4237-4249.
-
(2011)
Cell Cycle
, vol.10
, pp. 4237-4249
-
-
Botcheva, K.1
McCorkle, S.R.2
McCombie, W.R.3
Dunn, J.J.4
Anderson, C.W.5
-
17
-
-
77951751797
-
P53 functions and cell lines: Have we learned the lessons from the past?
-
Millau J-F, Mai S, Bastien N, Drouin R (2010) p53 functions and cell lines: have we learned the lessons from the past? Bioessays 32: 392-400.
-
(2010)
Bioessays
, vol.32
, pp. 392-400
-
-
Millau, J.-F.1
Mai, S.2
Bastien, N.3
Drouin, R.4
-
18
-
-
60149112271
-
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls
-
Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, et al. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27: 66-75.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 66-75
-
-
Rozowsky, J.1
Euskirchen, G.2
Auerbach, R.K.3
Zhang, Z.D.4
Gibson, T.5
-
19
-
-
0035265686
-
PUMA, a novel proapoptotic gene, is induced by p53
-
Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683-694.
-
(2001)
Mol Cell
, vol.7
, pp. 683-694
-
-
Nakano, K.1
Vousden, K.H.2
-
20
-
-
0035265823
-
PUMA induces the rapid apoptosis of colorectal cancer cells
-
Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673-682.
-
(2001)
Mol Cell
, vol.7
, pp. 673-682
-
-
Yu, J.1
Zhang, L.2
Hwang, P.M.3
Kinzler, K.W.4
Vogelstein, B.5
-
21
-
-
0037173059
-
The p53MH algorithm and its application in detecting p53-responsive genes
-
Hoh J, Jin S, Parrado T, Edington J, Levine AJ, et al. (2002) The p53MH algorithm and its application in detecting p53-responsive genes. Proceedings of the National Academy of Sciences U S A 99: 8467-8472.
-
(2002)
Proceedings of the National Academy of Sciences U S A
, vol.99
, pp. 8467-8472
-
-
Hoh, J.1
Jin, S.2
Parrado, T.3
Edington, J.4
Levine, A.J.5
-
22
-
-
84891775193
-
Genome-wide profiling reveals stimulusspecific functions of p53 during differentiation and DNA damage of human embryonic stem cells
-
Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, et al. (2014) Genome-wide profiling reveals stimulusspecific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 42: 205-223.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 205-223
-
-
Akdemir, K.C.1
Jain, A.K.2
Allton, K.3
Aronow, B.4
Xu, X.5
-
23
-
-
79955583542
-
Mapping and analysis of chromatin state dynamics in nine human cell types
-
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, et al. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473: 43-49.
-
(2011)
Nature
, vol.473
, pp. 43-49
-
-
Ernst, J.1
Kheradpour, P.2
Mikkelsen, T.S.3
Shoresh, N.4
Ward, L.D.5
-
24
-
-
84855281420
-
Repetitive elements may comprise over two-thirds of the human genome
-
de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7: e1002384.
-
(2011)
Plos Genet
, vol.7
, pp. e1002384
-
-
De Koning, A.P.1
Gu, W.2
Castoe, T.A.3
Batzer, M.A.4
Pollock, D.D.5
|