메뉴 건너뛰기




Volumn 19, Issue 11, 2014, Pages

Developing rainfall intensity-duration-frequency curves for alabama under future climate scenarios using artificial neural networks

Author keywords

Artificial neural network (ANN); Climate change; General circulation models (GCMs); Intensity duration frequency (IDF) curve; Temporal downscaling

Indexed keywords

BACKPROPAGATION; CLIMATE CHANGE; CLIMATE MODELS; EARTH ATMOSPHERE; GREENHOUSE GASES; RAIN; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; WATER MANAGEMENT;

EID: 84911885101     PISSN: 10840699     EISSN: 19435584     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000962     Document Type: Article
Times cited : (34)

References (42)
  • 1
    • 36348992093 scopus 로고    scopus 로고
    • Simple parameter estimation technique for three-parameter generalized extreme value distribution.
    • Bhunya, P., Jain, S., Ojha, C., and Agarwal, A. (2007). "Simple parameter estimation technique for three-parameter generalized extreme value distribution." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2007)12:6(682), 682-689.
    • (2007) J. Hydrol. Eng. , pp. 682-689
    • Bhunya, P.1    Jain, S.2    Ojha, C.3    Agarwal, A.4
  • 2
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-Background and methodology.
    • Bowden, G. J., Dandy, G. C., and Maier, H. R. (2005). "Input determination for neural network models in water resources applications. Part 1-Background and methodology." J. Hydrol., 301(1), 75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 1
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 3
    • 0034234334 scopus 로고    scopus 로고
    • Rainfall disaggregation using artificial neural networks.
    • Burian, S. J., et al. (2000). "Rainfall disaggregation using artificial neural networks." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2000)5:3(299), 299-307.
    • (2000) J. Hydrol. Eng. , pp. 299-307
    • Burian, S.J.1
  • 4
    • 0034746068 scopus 로고    scopus 로고
    • Training artificial neural networks to perform rainfall disaggregation.
    • Burian, S. J., Durrans, S. R., Nix, S. J., and Pitt, R. E. (2001). "Training artificial neural networks to perform rainfall disaggregation." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2001)6:1(43), 43-51.
    • (2001) J. Hydrol. Eng. , pp. 43-51
    • Burian, S.J.1    Durrans, S.R.2    Nix, S.J.3    Pitt, R.E.4
  • 5
    • 84999326574 scopus 로고    scopus 로고
    • Hydrologic modeling using artificial neural networks.
    • Dawson, C. W., and Wilby, R. L. (2001). "Hydrologic modeling using artificial neural networks." Prog. Phys. Geogr., 25(1), 80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 1
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 33645989739 scopus 로고    scopus 로고
    • Temporal neural networks for downscaling climate variability and extremes.
    • Dibikie, Y. B., and Coulibaly, P. (2006). "Temporal neural networks for downscaling climate variability and extremes." Neural Networks, 19(2), 135-144.
    • (2006) Neural Networks , vol.19 , pp. 2
    • Dibikie, Y.B.1    Coulibaly, P.2
  • 7
    • 0035176793 scopus 로고    scopus 로고
    • Estimation and internet-based dissemination of extreme rainfall information.
    • Transportation Research Board, National Research Council, Washington, DC
    • Durrans, S. R., and Brown, P. A. (2001). "Estimation and internet-based dissemination of extreme rainfall information." Transportation Research Record 1743, Transportation Research Board, National Research Council, Washington, DC, 41-48.
    • (2001) Transportation Research Record 1743 , pp. 41-48
    • Durrans, S.R.1    Brown, P.A.2
  • 8
    • 0003810237 scopus 로고
    • Five- to 60-min precipitation frequency for the eastern and central United States.
    • National Weather Service, US. Dept. of Commerce, Washington, D.C.
    • Frederick, R. H., Myers, V. A., and Auciello, E. P. (1977). "Five- to 60-min precipitation frequency for the eastern and central United States." NOAA Technical Memorandum NWS HYDRO-35, National Weather Service, U.S. Dept. of Commerce, Washington, D.C.
    • (1977) NOAA Technical Memorandum NWS HYDRO-35
    • Frederick, R.H.1    Myers, V.A.2    Auciello, E.P.3
  • 9
    • 0027149406 scopus 로고
    • Predicting runoff from rainfall using neural networks
    • Halff, A. H., Halff, H. M., and Azmoodeh, M. (1993). "Predicting runoff from rainfall using neural networks." J. Hydrol. Eng., 760-765.
    • (1993) J. Hydrol. Eng. , pp. 760-765
    • Halff, A.H.1    Halff, H.M.2    Azmoodeh, M.3
  • 10
    • 0003542005 scopus 로고
    • Rainfall frequency atlas of the United States for durations from 30 min to 24 h and return periods from 1 to 100 years.
    • Weather Bureau, US. Dept. of Commerce, Washington, D.C.
    • Hershfield, D. M. (1961). "Rainfall frequency atlas of the United States for durations from 30 min to 24 h and return periods from 1 to 100 years." Technical Paper No. 40, Weather Bureau, U.S. Dept. of Commerce, Washington, D.C.
    • (1961) Technical Paper No. 40
    • Hershfield, D.M.1
  • 11
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme value distribution by method of probability weighted moments.
    • Hosking, J. R. M., Wallis, J. R., andWood, E. F. (1985). "Estimation of the generalized extreme value distribution by method of probability weighted moments." Technometrics, 27(3), 251-261.
    • (1985) Technometrics , vol.27 , pp. 3
    • Hosking, J.R.M.1    Wallis, J.R.2    Wood, E.F.3
  • 12
    • 84875520036 scopus 로고    scopus 로고
    • Modeling effects of changing land use/cover on daily streamflow: An artificial neural network and curve number based hybrid approach.
    • Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P., and Lockaby, B. G. (2013). "Modeling effects of changing land use/cover on daily streamflow: An artificial neural network and curve number based hybrid approach." J. Hydrol., 485, 103-112, 10.1016/j.jhydrol.2012.08.032.
    • (2013) J. Hydrol. , vol.485 , pp. 103-112
    • Isik, S.1    Kalin, L.2    Schoonover, J.E.3    Srivastava, P.4    Lockaby, B.G.5
  • 13
    • 0025256586 scopus 로고
    • Parameter estimation and sensitivity analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall.
    • Islam, S., Entekhabi, D., and Bras, R. L. (1990). "Parameter estimation and sensitivity analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall." J. Geophys. Res., 95(D3), 2093-2100.
    • (1990) J. Geophys. Res. , vol.95 , pp. D3
    • Islam, S.1    Entekhabi, D.2    Bras, R.L.3
  • 14
    • 77955637658 scopus 로고    scopus 로고
    • Predicting water quality in unmonitored watersheds using artificial neural networks.
    • Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G. (2010). "Predicting water quality in unmonitored watersheds using artificial neural networks." J. Environ. Qual., 39(4), 1429-1440.
    • (2010) J. Environ. Qual. , vol.39 , pp. 4
    • Kalin, L.1    Isik, S.2    Schoonover, J.E.3    Lockaby, B.G.4
  • 15
    • 84875747385 scopus 로고    scopus 로고
    • Robustness and uncertainties in the new CMIP5 climate model projections.
    • Knutti, R., and Sedlácek, J. (2013). "Robustness and uncertainties in the new CMIP5 climate model projections." Nat. Clim. Change, 3(4), 369-373.
    • (2013) Nat. Clim. Change , vol.3 , pp. 4
    • Knutti, R.1    Sedlácek, J.2
  • 16
    • 77953164563 scopus 로고    scopus 로고
    • Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching
    • Li, H., Sheffield, J., and Wood, E. F. (2010). "Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching." J. Geophys. Res. Atmos., 115(D10).
    • (2010) J. Geophys. Res. Atmos. , vol.115 , Issue.D10
    • Li, H.1    Sheffield, J.2    Wood, E.F.3
  • 17
    • 71949098226 scopus 로고    scopus 로고
    • Temperature dependence of global precipitation extremes
    • Liu, S., Fu, C., Shiu, C., Chen, J., and Wu, F. (2009). "Temperature dependence of global precipitation extremes." Geophys. Res. Lett., 36(17).
    • (2009) Geophys. Res. Lett. , vol.36 , Issue.17
    • Liu, S.1    Fu, C.2    Shiu, C.3    Chen, J.4    Wu, F.5
  • 18
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications.
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications." Environ. Model. Software, 15(1), 101-123.
    • (2000) Environ. Model. Software , vol.15 , pp. 1
    • Maier, H.R.1    Dandy, G.C.2
  • 19
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit.
    • Massey, F. J. (1951). "The Kolmogorov-Smirnov test for goodness of fit." Am. Stat. Assoc., 46(253), 68-78.
    • (1951) Am. Stat. Assoc. , vol.46 , pp. 253
    • Massey, F.J.1
  • 20
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems.
    • May, R. J., Dandy, G. C., Maier, H. R., and Nixon, J. B. (2008). "Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems." Environ. Model. Software, 23(10), 1289-1299.
    • (2008) Environ. Model. Software , vol.23 , pp. 10
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 22
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfallrunoff models.
    • Minns, A.W., and Hall, M. J. (1996). "Artificial neural networks as rainfallrunoff models." Hydrol. Sci. J., 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , pp. 3
    • Minns, A.W.1    Hall, M.J.2
  • 23
    • 84893768007 scopus 로고    scopus 로고
    • The impact of climate change on rainfall intensity-duration-frequency (IDF) curves in Alabama.
    • Mirhosseini, G., Srivastava, P., and Stefanova, L. (2013). "The impact of climate change on rainfall intensity-duration-frequency (IDF) curves in Alabama." Reg. Environ. Change, 13(1), 25-33.
    • (2013) Reg. Environ. Change , vol.13 , pp. 1
    • Mirhosseini, G.1    Srivastava, P.2    Stefanova, L.3
  • 24
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1: A discussion of principles.
    • Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models. Part 1: A discussion of principles." J. Hydrol., 10(3), 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 3
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 25
    • 84911885303 scopus 로고    scopus 로고
    • NCDC Online Climate Data Directory. NOAA National Climatic Data Center (NCDC). .
  • 26
    • 0024648538 scopus 로고
    • Rainfall disaggregation model for continuous hydrologic modeling.
    • Ormsbee, L. E. (1989). "Rainfall disaggregation model for continuous hydrologic modeling." J. Hydrol. Eng., 10.1061/(ASCE)0733-9429(1989)115:4(507), 507-525.
    • (1989) J. Hydrol. Eng. , pp. 507-525
    • Ormsbee, L.E.1
  • 27
    • 0036721959 scopus 로고    scopus 로고
    • SPECIES: A spatial evaluation of climate impact on the envelope of species.
    • Pearson, R. G., Dawson, T. P., Berry, P. M., and Harrison, P. A. (2002). "SPECIES: A spatial evaluation of climate impact on the envelope of species." Ecol. Model., 154(3), 289-300.
    • (2002) Ecol. Model. , vol.154 , pp. 3
    • Pearson, R.G.1    Dawson, T.P.2    Berry, P.M.3    Harrison, P.A.4
  • 28
    • 77951890343 scopus 로고    scopus 로고
    • Development of rainfall intensity duration frequency curves for the City of London under the changing climate.
    • Univ. of Western Ontario, London, ON, Canada
    • Prodanovic, P., and Simonovic, S. P. (2007). "Development of rainfall intensity duration frequency curves for the City of London under the changing climate." Water Resources Research Rep. No. 058, Univ. of Western Ontario, London, ON, Canada.
    • (2007) Water Resources Research Rep. No. 058
    • Prodanovic, P.1    Simonovic, S.P.2
  • 29
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting.
    • Qi, M., and Zhang, G. P. (2001). "An investigation of model selection criteria for neural network time series forecasting." Eur. J. Oper. Res., 132(3), 666-680.
    • (2001) Eur. J. Oper. Res. , vol.132 , pp. 3
    • Qi, M.1    Zhang, G.P.2
  • 30
    • 0036498494 scopus 로고    scopus 로고
    • An optimal neural network and concrete strength modeling.
    • Ren, L., and Zhao, M. Z. (2002). "An optimal neural network and concrete strength modeling." Adv. Eng. Softw., 33(3), 117-130.
    • (2002) Adv. Eng. Softw. , vol.33 , pp. 3
    • Ren, L.1    Zhao, M.Z.2
  • 32
    • 0023647901 scopus 로고
    • Some models for rainfall based on stochastic point processes.
    • Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). "Some models for rainfall based on stochastic point processes." Proc. R. Soc. A, Lond., 410(1839), 269-288.
    • (1987) Proc. R. Soc. A, Lond. , vol.410 , pp. 1839
    • Rodriguez-Iturbe, I.1    Cox, D.R.2    Isham, V.3
  • 35
    • 0029416249 scopus 로고
    • Neural-network models of rainfall-runoff process.
    • Smith, J., and Eli, R. N. (1995). "Neural-network models of rainfall-runoff process." J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733- 9496(1995)121:6(499), 499-508.
    • (1995) J. Water Resour. Plann. Manage. , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 36
    • 0035397503 scopus 로고    scopus 로고
    • Disaggregation of daily rainfall for continuous watershed modeling.
    • Socolofsky, S., Adams, E., and Entekhabi, D. (2001). "Disaggregation of daily rainfall for continuous watershed modeling." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2001)6:4(300), 300-309.
    • (2001) J. Hydrol. Eng. , pp. 300-309
    • Socolofsky, S.1    Adams, E.2    Entekhabi, D.3
  • 37
    • 84911882175 scopus 로고    scopus 로고
    • Representation of conditional random distributions as a problem of "spatial, interpolation." GeoENV II-Geostatistics for environmental applications
    • Springer, Netherlands
    • Von Storch, H. (1999). "Representation of conditional random distributions as a problem of "spatial" interpolation." GeoENV II-Geostatistics for environmental applications, Springer, Netherlands, 13-23.
    • (1999) , pp. 13-23
    • Von Storch, H.1
  • 39
    • 0344038754 scopus 로고    scopus 로고
    • Linear versus nonlinear techniques in downscaling.
    • Weichert, A., and Burger, G. (1998). "Linear versus nonlinear techniques in downscaling." Clim. Res., 10(2), 83-93.
    • (1998) Clim. Res. , vol.10 , pp. 2
    • Weichert, A.1    Burger, G.2
  • 40
    • 0027151354 scopus 로고
    • Results of the time series prediction competition at the Santa Fe Institute.
    • Weigend, A. S., and Gershenfeld, N. A. (1993). "Results of the time series prediction competition at the Santa Fe Institute." Neural Networks, IEEE Int. Conf., IEEE, 1786-1793.
    • (1993) Neural Networks. IEEE Int. Conf. IEEE , pp. 1786-1793
    • Weigend, A.S.1    Gershenfeld, N.A.2
  • 41
    • 70350143071 scopus 로고    scopus 로고
    • Application of northeast regional climate center research results for the purpose of evaluating and updating intensity-duration-frequency (IDF) curves. Case study: Rochester, New York.
    • ASCE, Reston, VA
    • Wolcott, S. B., Mroz, M., and Basile, J. (2009). "Application of northeast regional climate center research results for the purpose of evaluating and updating intensity-duration-frequency (IDF) curves. Case study: Rochester, New York." Proc., World Environmental and Water Resources Congress 2009, ASCE, Reston, V.A.
    • (2009) Proc. World Environmental and Water Resources Congress 2009
    • Wolcott, S.B.1    Mroz, M.2    Basile, J.3
  • 42
    • 54049096726 scopus 로고    scopus 로고
    • Design of ensemble neural network using the Akaike information criterion.
    • Zhao, Z., Zhang, Y., and Liao, H. (2008). "Design of ensemble neural network using the Akaike information criterion." Eng. Appl. Artif. Intell., 21(8), 1182-1188.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 8
    • Zhao, Z.1    Zhang, Y.2    Liao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.